C语言数据结构基础学习笔记——栈和队列

以前咱们学过了普通的线性表,接下来咱们来了解一下两种特殊的线性表——栈和队列。编程

栈是只容许在一端进行插入或删除的线性表。数组

栈的顺序存储结构也叫做顺序栈,对于栈顶指针top,当栈为空栈时,top=-1;当栈为满栈时,top=MaxSize-1。顺序栈的定义为:数据结构

#define MaxSize 50                            //定义栈中元素的最大个数  typedef struct{ Elemtype data[MaxSize]; //存放栈中元素 
    int top;                                  //栈顶指针 
}SqStack;                                     //顺序栈的简写

顺序栈的入栈操做为:函数

bool Push(SqStack &S,ElemType x){ if(S.top==MaxSize-1) return false; S.data[++S.top]=x; return true; } 

顺序栈的出栈操做为:spa

bool Pop(SqStack &S,ElemType &x){ if(S.top==-1) return false; x=S.data[S.top--];       return true; } 

顺序栈读取栈顶元素为:指针

bool GetTop(SqStack S,ElemType &x){ if(S.top==-1) return false; x=S.data[S.top]; return true; } 

顺序栈读取栈顶元素与出栈操做对比,注意读取栈顶元素时栈顶指针没有自减。code

对于一个数组,若是只从数组头部开始入栈,并无达到很高的空间利用率,所以咱们引入共享栈的概念。共享栈是两个栈共用同一个数组,分别从数组头部和数组尾部开始开始入栈。其定义为:blog

#define MaxSize 100                            //定义栈中元素的最大个数  typedef struct{ Elemtype data[MaxSize]; //存放栈中元素 
    int top1;                                  //栈1顶指针 
    int top2;                                  //栈2顶指针 
}SqDoubleStack;                                //共享栈的简写
bool Push(SqStack &S,ElemType x,int stackNum){ if(S.top1+1==S.top2) return false; if(stackNum==1) S.data[++S.top1]=x; else if(stackNum==2) S.data[--S.top2]=x; return true; } 

共享栈的满栈条件是top1+1=top2。递归

同时,栈也有链式存储结构,叫做链栈,它空栈时top=NULL,通常不会满栈。链栈的定义为:队列

typedef struct SNode{ ElemType data; //数据域
    struct SNode *next;                //指针域 
}SNode,*SLink;                         //链式栈的结点
typedef struct LinkStack{ SLink top; //栈顶指针 
    int count;                         //链式栈结点数 
}LinkStack;

栈有着丰富的应用场景,比较经典的题目有括号的匹配以及后缀表达式的求值。

①括号的匹配:给你一串杂乱的大,中,小括号的序列,让你判断这里的括号序列满不知足数学计算的规律(括号套括号)。主要思路是将全部的左括号依次入栈,碰到右括号出栈匹配,如果不一样种的括号返回false,如果同一种括号则继续以上操做,直到空栈而且数组中的字符串遍历完成,返回true。

②后缀表达式的计算:后缀表达式是计算机最喜欢的一种表达式方式,例如(5+10+1*13)/14这个中缀表达式,它的后缀表达式为5 10 + 1 13 * + 14 /,其将每一步计算的运算符号置后。利用栈计算后缀表达式的主要思路是:①将数字5入栈,再将数字10入栈;②当指针碰到运算符+时,将栈中的前两个元素出栈进行计算(后出栈的数在前位),结果入栈,如本例值15入栈;③同上一步,计算1*13得13入栈,此时栈底值15,栈顶值13;④同上一步,指针碰到运算符+,将15与13求和,得值28入栈;⑤再同上一步,计算28/14=2入栈;⑥此时字符串数组遍历完毕,栈中的惟一值2则为表达式的结果。

栈思想的最重要的一个应用即是递归,递归是指在一个函数、过程或数据结构中的定义中又应用了它自身的编程思想。理解递归的一个基础方法即是找到递归式和递归边界,咱们来看两个例子:

①用递归求n的阶乘:

int F(int n){ if(n==0) return 1;                //递归边界 
    else return n*F(n-1);             //递归式 
}

②求斐波那契数列的第n项:

int Fib(int n){ if(n==0) return 0;                 //递归边界
    else if(n==1) return 1;            //递归边界
    else return Fib(n-1)+Fib(n-2);     //递归式 
}

递归式是每一次递归过程的计算核心,而递归边界就是每一次递归的结束标志。

另外一种特殊的线性表是队列,队列的定义是只容许在一端进行插入,而在另外一端进行删除的线性表。

队列的顺序存储结构是顺序队列,其定义为:

#define MaxSize 50                             //定义队列中元素的最大个数  typedef struct{ Elemtype data[MaxSize]; //存放队列中元素 
    int front,rear;                            //队头指针和队尾指针 
}SqQueue;

但对于一个数组队列来讲,每一次入队和出队都会浪费一个数组位置,因而咱们引入循环队列的概念,队尾指针rear在指到队尾后会回到下标为0的位置(利用取余来实现),即每一次rear和front的更新基于如下操做:rear=(rear+1)%MaxSize,front=(front+1)%MaxSize。

可是这样又产生了新的问题,rear=front究竟是队空仍是队满没法判断。这样的问题有如下两种解决办法:①设一个frag,做为标志位,当队满时frag=1;②牺牲一个数组位置,保留一个空余单元,此时队满的判断标准变成了(rear+1)%MaxSize=front,队列中的元素数计算方法为:(rear-front+MaxSize)%MaxSize。

循环队列的入队操做为:

bool EnQueue(SqQueue &Q,ElemType x){ if((Q.rear+1)%MaxSize==Q.front) return false;    //队满
    Q.data[Q.rear]=x; Q.rear=(Q.rear+1)%MaxSize; return true; } 

循环队列的出队操做为:

bool DeQueue(SqQueue &Q,ElemType &x){ if(Q.rear==Q.front) return false;     //队空
    x=Q.data[Q.front]; Q.front=(Q.front+1)%MaxSize; return true; } 

队列链式存储的定义为:

typedef struct{ ElemType data; //数据域
    struct LinkNode *next;            //指针域 
}LinkNode;                            //链式队列的结点
typedef struct{ LinkNode *front,*rear;            //队头和队尾指针 
}LinkQueue;

链式队列的入队和出队相似于链表的相应操做。

相关文章
相关标签/搜索