从 API 1 开始,处理 Activity 的生命周期 (lifecycle) 就是个老大难的问题,基本上开发者们都看过这两张生命周期流程图:html
△ Activity 生命周期流程图android
随着 Fragment 的加入,这个问题也变得更加复杂:git
△ Fragment 生命周期流程图api
而开发者们面对这个挑战,给出了很是稳健的解决方案: 分层架构。安全
△ 表现层 (Presentation Layer)、域层 (Domain Layer) 和数据层 (Data Layer)服务器
如上图所示,经过将应用分为三层,如今只有最上面的 Presentation 层 (之前叫 UI 层) 才知道生命周期的细节,而应用的其余部分则能够安全地忽略掉它。网络
而在 Presentation 层内部也有进一步的解决方案: 让一个对象能够在 Activity 和 Fragment 被销毁、从新建立时依然留存,这个对象就是架构组件的 ViewModel 类。下面让咱们详细看看 ViewModel 工做的细节。架构
如上图,当一个视图 (View) 被建立,它有对应的 ViewModel 的引用地址 (注意 ViewModel 并无 View 的引用地址)。ViewModel 会暴露出若干个 LiveData,视图会经过数据绑定或者手动订阅的方式来观察这些 LiveData。并发
当设备配置改变时 (好比屏幕发生旋转),以前的 View 被销毁,新的 View 被建立:异步
这时新的 View 会从新订阅 ViewModel 里的 LiveData,而 ViewModel 对这个变化的过程彻底不知情。
归根到底,开发者在执行一个操做时,须要认真选择好这个操做的做用域 (scope)。这取决于这个操做具体是作什么,以及它的内容是否须要贯穿整个屏幕内容的生命周期。好比经过网络获取一些数据,或者是在绘图界面中计算一段曲线的控制锚点,可能所适用的做用域不一样。如何取消该操做的时间太晚,可能会浪费不少额外的资源;而若是取消的太早,又会出现频繁重启操做的状况。
在实际应用中,以咱们的 Android Dev Summit 应用为例,里面涉及到的做用域很是多。好比,咱们这里有一个活动计划页面,里面包含多个 Fragment 实例,而与之对应的 ViewModel 的做用域就是计划页面。与之相相似的,日程和信息页面相关的 Fragment 以及 ViewModel 也是同样的做用域。
此外咱们还有不少 Activity,而和它们相关的 ViewModel 的做用域就是这些 Activity。
您也能够自定义做用域。好比针对导航组件,您能够将做用域限制在登陆流程或者结帐流程中。咱们甚至还有针对整个 Application 的做用域。
有如此多的操做会同时进行,咱们须要有一个更好的方法来管理它们的取消操做。也就是 Kotlin 的协程 (Coroutine)。
协程的优势主要来自三个方面:
在 Jetpack 组件里,咱们为各个组件提供了对应的 scope,好比 ViewModel 就有与之对应的 viewModelScope,若是您想在这个做用域里启动协程,使用以下代码便可:
class MainActivityViewModel : ViewModel { init { viewModelScope.launch { // Start } } }
若是您在使用 AppCompatActivity 或 Fragment,则可使用 lifecycleScope,当 lifeCycle 被销毁时,操做也会被取消。代码以下:
class MyActivity : AppCompatActivity() { override fun onCreate(state: Bundle?) { super.onCreate(savedInstanceState) lifecycleScope.launch { // Run } } }
有些时候,您可能还须要在生命周期的某个状态 (启动时/恢复时等) 执行一些操做,这时您可使用 launchWhenStarted、launchWhenResumed、launchWhenCreated 这些方法:
class MyActivity : Activity { override fun onCreate(state: Bundle?) { super.onCreate(savedInstanceState) lifecycleScope.launch { // Run } lifecycleScope.launchWhenResumed { // Run } } }
注意,若是您在 launchWhenStarted 中设置了一个操做,当 Activity 被中止时,这个操做也会被暂停,直到 Activity 被恢复 (Resume)。
最后一种做用域的状况是贯穿整个应用。若是这个操做很是重要,您须要确保它必定被执行,这时请考虑使用 WorkManager。好比您编写了一个发推的应用,但愿撰写的推文被发送到服务器上,那这个操做就须要使用 WorkManager 来确保执行。而若是您的操做只是清理一下本地存储,那能够考虑使用 Application Scope,由于这个操做的重要性不是很高,彻底能够等到下次应用启动时再作。
WorkManager 不是本文介绍的重点,感兴趣的朋友请参考 《WorkManager 进阶课堂 | AndroidDevSummit 中文字幕视频》。
接下来咱们看看如何在 viewModelScope 里使用 LiveData。之前咱们想在协程里作一些操做,并将结果反馈到 ViewModel 须要这么操做:
class MyViewModel : ViewModel { private val _result = MutableLiveData<String>() val result: LiveData<String> = _result init { viewModelScope.launch { val computationResult = doComputation() _result.value = computationResult } } }
看看咱们作了什么:
这个作法并不理想。在 LifeCycle 2.2.0 以后,一样的操做能够用更精简的方法来完成,也就是 LiveData 协程构造方法 (coroutine builder):
class MyViewModel { val result = liveData { emit(doComputation()) } }
这个 liveData 协程构造方法提供了一个协程代码块,这个块就是 LiveData 的做用域,当 LiveData 被观察的时候,里面的操做就会被执行,当 LiveData 再也不被使用时,里面的操做就会取消。并且该协程构造方法产生的是一个不可变的 LiveData,能够直接暴露给对应的视图使用。而 emit() 方法则用来更新 LiveData 的数据。
让咱们来看另外一个常见用例,好比当用户在 UI 中选中一些元素,而后将这些选中的内容显示出来。一个常见的作法是,把被选中的项目的 ID 保存在一个 MutableLiveData 里,而后运行 switchMap。如今在 switchMap 里,您也可使用协程构造方法:
private val itemId = MutableLiveData<String>() val result = itemId.switchMap { liveData { emit(fetchItem(it)) } }
LiveData 协程构造方法还能够接收一个 Dispatcher 做为参数,这样您就能够将这个协程移至另外一个线程。
liveData(Dispatchers.IO) { }
最后,您还可使用 emitSource() 方法从另外一个 LiveData 获取更新的结果:
liveData(Dispatchers.IO) { emit(LOADING_STRING) emitSource(dataSource.fetchWeather()) }
接下来咱们来看如何取消协程。绝大部分状况下,协程的取消操做是自动的,毕竟咱们在对应的做用域里启动一个协程时,也同时明确了它会在什么时候被取消。但咱们有必要讲一讲如何在协程内部来手动取消协程。
这里补充一个大前提: 全部 kotlin.coroutines 的 suspend 方法都是可取消的。好比这种:
suspend fun printPrimes() { while(true) { // Compute delay(1000) } }
在上面这个无限循环里,每个 delay 都会检查协程是否处于有效状态,一旦发现协程被取消,循环的操做也会被取消。
那问题来了,若是您在 suspend 方法里调用的是一个不可取消的方法呢?这时您须要使用 isActivate 来进行检查并手动决定是否继续执行操做:
suspend fun printPrimes() { while(isActive) { // Compute } }
在进入具体的操做实践环节以前,咱们须要区分一下两种操做: 单次 (One-Shot) 操做和监听 (observers) 操做。好比 Twitter 的应用:
单次操做,好比获取用户头像和推文,只须要执行一次便可。
监听操做,好比界面下方的转发数和点赞数,就会持续更新数据。
让咱们先看看单次操做时的内容架构:
如前所述,咱们使用 LiveData 链接 View 和 ViewModel,而在 ViewModel 这里咱们则使用刚刚提到的 liveData 协程构造方法来打通 LiveData 和协程,再往右就是调用 suspend 方法了。
若是咱们想监听多个值的话,该如何操做呢?
第一种选择是在 ViewModel 以外也使用 LiveData:
△ Reopsitory 监听 Data Source 暴露出来的 LiveData,同时本身也暴露出 LiveData 供 ViewModel 使用
可是这种实现方式没法体现并发性,好比每次用户登出时,就须要手动取消全部的订阅。LiveData 自己的设计并不适合这种状况,这时咱们就须要使用第二种选择: 使用 Flow。
ViewModel 模式
当 ViewModel 监听 LiveData,并且没有对数据进行任何转换操做时,能够直接将 dataSource 中的 LiveData 赋值给 ViewModel 暴露出来的 LiveData:
val currentWeather: LiveData<String> = dataSource.fetchWeather()
若是使用 Flow 的话就须要用到 liveData 协程构造方法。咱们从 Flow 中使用 collect 方法获取每个结果,而后 emit 出来给 liveData 协程构造方法使用:
val currentWeatherFlow: LiveData<String> = liveData { dataSource.fetchWeatherFlow().collect { emit(it) } }
不过 Flow 给咱们准备了更简单的写法:
val currentWeatherFlow: LiveData<String> = dataSource.fetchWeatherFlow().asLiveData()
接下来一个场景是,咱们先发送一个一次性的结果,而后再持续发送多个数值:
val currentWeather: LiveData<String> = liveData { emit(LOADING_STRING) emitSource(dataSource.fetchWeather()) }
在 Flow 中咱们能够沿用上面的思路,使用 emit 和 emitSource:
val currentWeatherFlow: LiveData<String> = liveData { emit(LOADING_STRING)
但一样的,这种状况 Flow 也有更直观的写法:
val currentWeatherFlow: LiveData<String> = dataSource.fetchWeatherFlow() .onStart { emit(LOADING_STRING) } .asLiveData()
接下来咱们看看须要为接收到的数据作转换时的状况。
使用 LiveData 时,若是用 map 方法作转换,操做会进入主线程,这显然不是咱们想要的结果。这时咱们可使用 switchMap,从而能够经过 liveData 协程构造方法得到一个 LiveData,并且 switchMap 的方法会在每次数据源 LiveData 更新时调用。而在方法体内部咱们可使用 heavyTransformation 函数进行数据转换,并发送其结果给 liveData 协程构造方法:
val currentWeatherLiveData: LiveData<String> = dataSource.fetchWeather().switchMap { liveData { emit(heavyTransformation(it)) } }
使用 Flow 的话会简单许多,直接从 dataSource 得到数据,而后调用 map 方法 (这里用的是 Flow 的 map 方法,而不是 LiveData 的),而后转化为 LiveData 便可:
val currentWeatherFlow: LiveData<String> = dataSource.fetchWeatherFlow() .map { heavyTransformation(it) } .asLiveData()
Repository 模式
Repository 通常用来进行复杂的数据转换和处理,而 LiveData 没有针对这种状况进行设计。如今经过 Flow 就能够完成各类复杂的操做:
val currentWeatherFlow: Flow<String> = dataSource.fetchWeatherFlow() .map { ... } .filter { ... } .dropWhile { ... } .combine { ... } .flowOn(Dispatchers.IO) .onCompletion { ... } ...
数据源模式
而在涉及到数据源时,状况变得有些复杂,由于这时您多是在和其余代码库或者远程数据源进行交互,可是您又没法控制这些数据源。这里咱们分两种状况介绍:
1. 单次操做
若是使用 Retrofit 从远程数据源获取数值,直接将方法标记为 suspend 方法便可*:
suspend fun doOneShot(param: String) : String = retrofitClient.doSomething(param)
- Retrofit 从 2.6.0 开始支持 suspend 方法,Room 从 2.1.0 开始支持 suspend 方法。
若是您的数据源还没有支持协程,好比是一个 Java 代码库,并且使用的是回调机制。这时您可使用 suspendCancellableCoroutine 协程构造方法,这个方法是协程和回调之间的适配器,会在内部提供一个 continuation 供开发者使用:
suspend fun doOneShot(param: String) : Result<String> = suspendCancellableCoroutine { continuation -> api.addOnCompleteListener { result -> continuation.resume(result) }.addOnFailureListener { error -> continuation.resumeWithException(error) } }
如上所示,在回调方法取得结果后会调用 continuation.resume(),若是报错的话调用的则是 continuation.resumeWithException()。
注意,若是这个协程已经被取消,则 resume 调用也会被忽略。开发者能够在协程被取消时主动取消 API 请求。
2. 监听操做
若是数据源会持续发送数值的话,使用 flow 协程构造方法会很好地知足需求,好比下面这个方法就会每隔 2 秒发送一个新的天气值:
override fun fetchWeatherFlow(): Flow<String> = flow { var counter = 0 while(true) { counter++ delay(2000) emit(weatherConditions[counter % weatherConditions.size]) } }
若是开发者使用的是不支持 Flow 而是使用回调的代码库,则可使用 callbackFlow。好比下面这段代码,api 支持三个回调分支 onNextValue、onApiError 和 onCompleted,咱们能够获得结果的分支里使用 offer 方法将值传给 Flow,在发生错误的分支里 close 这个调用并传回一个错误缘由 (cause),而在顺利调用完成后直接 close 调用:
fun flowFrom(api: CallbackBasedApi): Flow<T> = callbackFlow { val callback = object : Callback { override fun onNextValue(value: T) { offer(value) } override fun onApiError(cause: Throwable) { close(cause) } override fun onCompleted() = close() } api.register(callback) awaitClose { api.unregister(callback) } }
注意在这段代码的最后,若是 API 不会再有更新,则使用 awaitClose 完全关闭这条数据通道。
相信看到这里,您对如何在实际应用中使用协程、LiveData 和 Flow 已经有了比较系统的认识。您能够重温 Android Dev Summit 上 Jose Alcérreca 和 Yigit Boyar 的演讲来 视频 巩固理解。
若是您对协程、LiveData 和 Flow 有任何疑问和想法,欢迎在评论区和咱们分享。