若是未作特别说明,文中的程序都是 Python3 代码。算法
载入模块dom
import QuantLib as ql import scipy from scipy.stats import norm print(ql.__version__)
1.12
QuantLib 提供了多种类型的一维求解器,用以求解单参数函数的根,函数
\[ f(x)=0 \]工具
其中 \(f : R \to R\) 是实数域上的函数。spa
QuantLib 提供的求解器类型有:code
Brent
Bisection
Secant
Ridder
Newton
(要求提供成员函数 derivative
,计算导数)FalsePosition
这些求解器的构造函数均为默认构造函数,不接受参数。例如,Brent
求解器实例的构造语句为 mySolv = Brent()
。orm
求解器的成员函数 solve
有两种调用方式:对象
solve(f, accuracy, guess, step) solve(f, accuracy, guess, xMin, xMax)
f
:单参数函数或函数对象,返回值为一个浮点数。accuracy
:浮点数,表示求解精度 \(\epsilon\),用于中止计算。假设 \(x_i\) 是根的准确解,
guess
:浮点数,对根的初始猜想值。step
:浮点数,在第一种调用方式中,没有限定根的区间范围,算法须要本身搜索,肯定一个范围。step
规定了搜索算法的步长。xMin
、xMax
:浮点数,左右区间范围根求解器在量化金融中最经典的应用是求解隐含波动率。给按期权价格 \(p\) 以及其余参数 \(S_0\)、\(K\)、\(r_d\)、\(r_f\)、\(\tau\),咱们要计算波动率 \(\sigma\),知足ip
\[ f(\sigma) = \mathrm{blackScholesPrice}(S_0 , K, r_d , r_f , \sigma , \tau, \phi) - p = 0 \]
其中 Black-Scholes 函数中 \(\phi = 1\) 表明看涨期权;\(\phi = −1\) 表明看跌期权。
下面的例子显示了如何加一个多参数函数包装为一个单参数函数,并使用 QuantLib 求解器计算隐含波动率。
例子 1
# Black-Scholes 函数 def blackScholesPrice(spot, strike, rd, rf, vol, tau, phi): domDf = scipy.exp(-rd * tau) forDf = scipy.exp(-rf * tau) fwd = spot * forDf / domDf stdDev = vol * scipy.sqrt(tau) dp = (scipy.log(fwd / strike) + 0.5 * stdDev * stdDev) / stdDev dm = (scipy.log(fwd / strike) - 0.5 * stdDev * stdDev) / stdDev res = phi * domDf * (fwd * norm.cdf(phi * dp) - strike * norm.cdf(phi * dm)) return res # 包装函数 def impliedVolProblem(spot, strike, rd, rf, tau, phi, price): def inner_func(v): return blackScholesPrice(spot, strike, rd, rf, v, tau, phi) - price return inner_func def testSolver1(): # setup of market parameters spot = 100.0 strike = 110.0 rd = 0.002 rf = 0.01 tau = 0.5 phi = 1 vol = 0.1423 # calculate corresponding Black Scholes price price = blackScholesPrice(spot, strike, rd, rf, vol, tau, phi) # setup a solver mySolv1 = ql.Bisection() mySolv2 = ql.Brent() mySolv3 = ql.Ridder() accuracy = 0.00001 guess = 0.25 min = 0.0 max = 1.0 myVolFunc = impliedVolProblem(spot, strike, rd, rf, tau, phi, price) res1 = mySolv1.solve(myVolFunc, accuracy, guess, min, max) res2 = mySolv2.solve(myVolFunc, accuracy, guess, min, max) res3 = mySolv3.solve(myVolFunc, accuracy, guess, min, max) print('{0:<35}{1}'.format('Input Volatility:', vol)) print('{0:<35}{1}'.format('Implied Volatility Bisection:', res1)) print('{0:<35}{1}'.format('Implied Volatility Brent:', res2)) print('{0:<35}{1}'.format('Implied Volatility Ridder:', res3)) testSolver1()
# Input Volatility: 0.1423 # Implied Volatility Bisection: 0.14229583740234375 # Implied Volatility Brent: 0.14230199334812577 # Implied Volatility Ridder: 0.1422999996313447
Newton 算法要求为根求解器提供 \(f(\sigma)\) 的导数 \(\frac{\partial f}{\partial \sigma}\)(即 vega)。下面的例子显示了如何将导数添加进求解隐含波动率的过程。为此咱们须要一个类,一方面提供做为一个函数对象,另外一方面要提供成员函数 derivative
。
例子 2
class BlackScholesClass: def __init__(self, spot, strike, rd, rf, tau, phi, price): self.spot_ = spot self.strike_ = strike self.rd_ = rd self.rf_ = rf self.phi_ = phi self.tau_ = tau self.price_ = price self.sqrtTau_ = scipy.sqrt(tau) self.d_ = norm self.domDf_ = scipy.exp(-self.rd_ * self.tau_) self.forDf_ = scipy.exp(-self.rf_ * self.tau_) self.fwd_ = self.spot_ * self.forDf_ / self.domDf_ self.logFwd_ = scipy.log(self.fwd_ / self.strike_) def blackScholesPrice(self, spot, strike, rd, rf, vol, tau, phi): domDf = scipy.exp(-rd * tau) forDf = scipy.exp(-rf * tau) fwd = spot * forDf / domDf stdDev = vol * scipy.sqrt(tau) dp = (scipy.log(fwd / strike) + 0.5 * stdDev * stdDev) / stdDev dm = (scipy.log(fwd / strike) - 0.5 * stdDev * stdDev) / stdDev res = phi * domDf * (fwd * norm.cdf(phi * dp) - strike * norm.cdf(phi * dm)) return res def impliedVolProblem(self, spot, strike, rd, rf, vol, tau, phi, price): return self.blackScholesPrice( spot, strike, rd, rf, vol, tau, phi) - price def __call__(self, x): return self.impliedVolProblem( self.spot_, self.strike_, self.rd_, self.rf_, x, self.tau_, self.phi_, self.price_) def derivative(self, x): # vega stdDev = x * self.sqrtTau_ dp = (self.logFwd_ + 0.5 * stdDev * stdDev) / stdDev return self.spot_ * self.forDf_ * self.d_.pdf(dp) * self.sqrtTau_ def testSolver2(): # setup of market parameters spot = 100.0 strike = 110.0 rd = 0.002 rf = 0.01 tau = 0.5 phi = 1 vol = 0.1423 # calculate corresponding Black Scholes price price = blackScholesPrice( spot, strike, rd, rf, vol, tau, phi) solvProblem = BlackScholesClass( spot, strike, rd, rf, tau, phi, price) mySolv = ql.Newton() accuracy = 0.00001 guess = 0.10 step = 0.001 res = mySolv.solve( solvProblem, accuracy, guess, step) print('{0:<20}{1}'.format('Input Volatility:', vol)) print('{0:<20}{1}'.format('Implied Volatility:', res)) testSolver2()
# Input Volatility: 0.1423 # Implied Volatility: 0.14230000000000048
导数的使用明显提升了精度。