锁是计算机协调多个进程或线程并发访问某一资源的机制。html
由于数据也是一种供许多用户共享的资源,如何保证数据并发访问的一致性、有效性是全部数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素,因此进一步学习MySQL,就须要去了解它的锁机制。mysql
本文主要记录学习了 MyISAM 和 InnoDB 这两个存储引擎,并且更加关注的是 InnoDB(由于常常用😁)git
相对其余数据库而言,MySQL 的锁机制比较简单,其最显著的特色是不一样的存储引擎支持不一样的锁机制。好比,MyISAM和MEMORY存储引擎采用的是表级锁(table-level locking);BDB存储引擎采用的是页面锁(page-level locking),但也支持表级锁;InnoDB存储引擎既支持行级锁(row-level locking),也支持表级锁,但默认状况下是采用行级锁。 MySQL这3种锁的特性可大体概括以下。github
开销、加锁速度、死锁、粒度、并发性能 ①:表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的几率最高,并发度最低。spring
②:行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的几率最低,并发度也最高。sql
③:页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度通常。数据库
从上述特色可见,很难笼统地说哪一种锁更好,只能就具体应用的特色来讲哪一种锁更合适!仅从锁的角度来讲:表级锁更适合于以查询为主,只有少许按索引条件更新数据的应用,如Web应用;而行级锁则更适合于有大量按索引条件并发更新少许不一样数据,同时又有并发查询的应用,如一些在线事务处理(OLTP)系统。因为BDB已经被InnoDB取代,即将成为历史(因此如今基本都在使用InnoDB存储引擎)。session
MyISAM 存储引擎只支持表锁,这也是 MySQL 开始几个版本中惟一支持的锁类型。数据结构
mysql> show status like 'table%';
+----------------------------+-------+
| Variable_name | Value |
+----------------------------+-------+
| Table_locks_immediate | 4 |
| Table_locks_waited | 0 |
| Table_open_cache_hits | 4 |
| Table_open_cache_misses | 8 |
| Table_open_cache_overflows | 0 |
+----------------------------+-------+
5 rows in set (0.00 sec)
复制代码
若是 Table_locks_waited 的值比较高,则说明存在着较严重的表级锁争用状况。并发
MySQL中的表锁兼容性:
请求锁模式 矩阵结果表示是否兼容 当前锁模式 |
None | 读锁 | 写锁 |
---|---|---|---|
读锁 | 是 | 是 | 否 |
写锁 | 是 | 否 | 否 |
也就是说,在MyISAM读模式下,不会阻塞其它用户的同一表读操做,可是会阻塞写操做;而在写模式下,会同时阻塞其它用户同一表的读写操做。
新建一个user表,引擎是MyISAM:
mysql> desc user;
+---------+-------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+----------------+
| id | int(11) | NO | PRI | NULL | auto_increment |
| name | varchar(20) | YES | | NULL | |
| age | int(3) | YES | | NULL | |
| address | varchar(60) | YES | | NULL | |
+---------+-------------+------+-----+---------+----------------+
4 rows in set (0.01 sec)
复制代码
session A | session B |
---|---|
得到user表的锁锁定 mysql> lock table user write; Query OK, 0 rows affected (0.00 sec) mysql>select * from user; Empty set (0.00 sec) mysql> insert into user(id, name, age, address) values(1, 'test', 18, 'test address'); Query OK,1 row affected (0.02 sec) |
|
mysql> select * from user\G 被阻塞了,一直卡住在这,没有返回结果 |
|
mysql> unlock tables; Query OK, 0 rows affected (0.00 sec) |
等待 |
mysql> select * from user\G ********** name: test age: 18 address: test address 1 row in set (5 min 29.61 sec) |
能够看出,经过lock table user write
将user表锁住后,其它用户进行对该表操做时,都会被阻塞。
在用LOCK TABLES给表显式加表锁时,必须同时取得全部涉及到表的锁,而且MySQL不支持锁升级。也就是说,在执行LOCK TABLES后,只能访问显式加锁的这些表,不能访问未加锁的表;同时,若是加的是读锁,那么只能执行查询操做,而不能执行更新操做。其实,在自动加锁的状况下也基本如此,MyISAM老是一次得到SQL语句所须要的所有锁。这也正是MyISAM表不会出现死锁(Deadlock Free)的缘由。
session A | session B |
---|---|
得到user表的读锁定 mysql> lock table user read; Query OK, 0 rows affected (0.00 sec) |
|
mysql> select * from user where id = 1 \G 中从查询速度中能够看出,sessionB并无被阻塞 1 row in set (0.00 sec) |
|
因为没有获取order表的读锁定,因此不能查询order表 mysql> select * from order ;ERROR 1100 (HY000): Table 'order' was not locked with LOCK TABLES |
可是session B能够访问oder表,不阻塞 mysql> select * from order ;Empty set (0.00 sec) |
得到读锁定时,不能进行写操做 mysql> update user set name = 'wahaha' where id = 1; ERROR 1099 (HY000): Table 'user' was locked with a READ lock and can't be updated |
其它session进行更新操做时,会被阻塞 mysql> update user set name = 'wahaha' where id = 1; 等待ing |
释放锁 mysql> unlock tables; Query OK, 0 rows affected (0.00 sec) |
等待 |
mysql> update user set name = 'wahaha' where id = 1; Query OK, 1 row affected (1 min 6.43 sec) |
MyISAM表的读和写是串行的,但这是就整体而言的。在必定条件下,MyISAM表也支持查询和插入操做的并发进行。MyISAM存储引擎有一个系统变量concurrent_insert,专门用以控制其并发插入的行为,其值分别能够为0、1或2。
MyISAM存储引擎的读锁和写锁是互斥的,读写操做是串行的。 但它认为写锁的优先级比读锁高,因此即便读请求先到锁等待队列,写请求后到,写锁也会插到读锁请求以前! 这也正是MyISAM表不太适合于有大量更新操做和查询操做应用的缘由,由于,大量的更新操做会形成查询操做很难得到读锁,从而可能永远阻塞。 能够经过一些设置来调节MyISAM的调度行为。
虽然上面3种方法都是要么更新优先,要么查询优先的方法,但仍是能够用其来解决查询相对重要的应用(如用户登陆系统)中,读锁等待严重的问题。 另外,MySQL也提供了一种折中的办法来调节读写冲突,即给系统参数max_write_lock_count设置一个合适的值,当一个表的读锁达到这个值后,MySQL就暂时将写请求的优先级下降,给读进程必定得到锁的机会。 上面已经讨论了写优先调度机制带来的问题和解决办法。这里还要强调一点:一些须要长时间运行的查询操做,也会使写进程“饿死”!所以,应用中应尽可能避免出现长时间运行的查询操做,不要总想用一条SELECT语句来解决问题,由于这种看似巧妙的SQL语句,每每比较复杂,执行时间较长,在可能的状况下能够经过使用中间表等措施对SQL语句作必定的“分解”,使每一步查询都能在较短期完成,从而减小锁冲突。若是复杂查询不可避免,应尽可能安排在数据库空闲时段执行,好比一些按期统计能够安排在夜间执行。
InnoDB与MyISAM的最大不一样有两点:一是支持事务(TRANSACTION);二是采用了行级锁。行级锁与表级锁原本就有许多不一样之处,另外,事务的引入也带来了一些新问题。
学习Spring的时候,通常经过注解@Transitional
就能启动spring的事务管理,在MySQL中也一样支持事务的四个原则ACID:
相对于串行处理来讲,并发事务处理能大大增长数据库资源的利用率,提升数据库系统的事务吞吐量,从而能够支持更多的用户。但并发事务处理也会带来一些问题,主要包括如下几种状况。
数据库的事务隔离越严格,并发反作用越小,但付出的代价也就越大,由于事务隔离实质上就是使事务在必定程度上 “串行化”进行,这显然与“并发”是矛盾的。同时,不一样的应用对读一致性和事务隔离程度的要求也是不一样的,好比许多应用对“不可重复读”和“幻读”并不敏感,可能更关心数据并发访问的能力。
4种隔离级别比较
读数据一致性及容许的并发反作用 隔离级别 |
读数据一致性 | 脏读 | 不可重复读 | 幻读 |
---|---|---|---|---|
未提交读(Read uncommitted) | 最低级别,只能保证不读取 物理上损害的数据 |
是 | 是 | 是 |
已提交读(Read committed) | 语句级 | 否 | 是 | 是 |
可重复读(Repeatable read) | 事务级 | 否 | 否 | 是 |
可序列化(Serializable) | 最高级别,事务级 | 否 | 否 | 否 |
检查InnoDB_row_lock状态变量来分析:
mysql> show status like 'InnoDB_row_lock%';
+-------------------------------+-------+
| Variable_name | Value |
+-------------------------------+-------+
| Innodb_row_lock_current_waits | 0 |
| Innodb_row_lock_time | 0 |
| Innodb_row_lock_time_avg | 0 |
| Innodb_row_lock_time_max | 0 |
| Innodb_row_lock_waits | 0 |
+-------------------------------+-------+
5 rows in set (0.00 sec)
复制代码
若是InnoDB_row_lock_waits和InnoDB_row_lock_time_avg的值比较高,表示锁争用状况比较严重。
InnoDB实现了一下两种类型的行锁:
另外,为了容许行锁和表锁共存,实现多粒度锁机制,InnoDB还有两种内部使用的意向锁(Intention Locks),这两种意向锁都是表锁。(感受与MyISAM的表锁机制相似)
InnoDB行锁模式兼容性列表:
请求锁模式 矩阵结果表示是否兼容 当前锁模式 |
X | IX | S | IS |
---|---|---|---|---|
X | 冲突 | 冲突 | 冲突 | 冲突 |
IX | 冲突 | 兼容 | 冲突 | 兼容 |
S | 冲突 | 冲突 | 兼容 | 兼容 |
IS | 冲突 | 兼容 | 兼容 | 兼容 |
若是一个事务请求的锁模式与当前的锁兼容,InnoDB就将请求的锁授予该事务;反之,若是二者不兼容,该事务就要等待锁释放。 意向锁是InnoDB自动加的;对于UPDATE、DELETE和INSERT语句,InnoDB会自动给设计数据集加排他锁(X);对于普通的SELECT语句,InnoDB不会加锁。 能够经过如下语句显示给记录集加共享锁或排他锁:
用SELECT ... IN SHARE MODE得到共享锁,主要用在须要数据依存关系时来确认某行记录是否存在,并确保没有人对这个记录进行UPDATE或者DELETE操做。可是若是当前事务也须要对该记录进行更新操做,则颇有可能形成死锁,对于锁定行记录后须要进行更新操做的应用,应该使用SELECT... FOR UPDATE方式得到排他锁。
因此在使用共享锁模式下,查询完数据后不要进行更新操做,否则又可能会形成死锁;要更新数据,应该使用排他锁模式。
InnoDB行锁是经过给索引上的索引项加锁来实现的,这一点MySQL与Oracle不一样,后者是经过在数据块中对相应数据行加锁来实现的。InnoDB这种行锁实现特色意味着:只有经过索引条件检索数据,InnoDB才使用行级锁,不然,InnoDB将使用表锁!(这个问题遇到过,因为没加索引,行锁变表锁)
能够经过explain执行计划查看是否真正使用了索引。
当咱们用范围条件而不是相等条件检索数据,并请求共享或排他锁时,InnoDB会给符合条件的已有数据记录的索引项加锁;对于键值在条件范围内但并不存在的记录,叫作“间隙(GAP)”,InnoDB也会对这个“间隙”加锁,这种锁机制就是所谓的间隙锁(Next-Key锁)。
举个🌰:
假如emp表中只有101条记录,其id的值从1~101,下面的sql: select * from emp where id > 100 for update; 是范围条件查询,InnoDB不只会对符合条件的id值为101的记录加锁,也会对id大于101(并不存在的值)的“间隙”加锁。
结论:
很显然,在使用范围条件检索并锁定记录时,InnoDB这种加锁机制会阻塞符合条件范围内键值的并发插入,这每每会形成严重的锁等待。所以,在实际应用开发中,尤为是并发插入比较多的应用,咱们要尽可能优化业务逻辑,尽可能使用相等条件来访问更新数据,避免使用范围条件。
上面知识点说过,MyISAM表锁是deadlock free的,这是由于MyISAM老是一次得到所需的所有锁,要么所有知足,要么等待,所以不会出现死锁。但在InnoDB中,除单个SQL组成的事务外,锁是逐步或得的,因此InnoDB发生死锁是可能的。
举个🌰:
session A | session B |
---|---|
mysql> set autocommit = 0; Query OK, 0 rows affected (0.00 sec) mysql> select * from table_1 where where id=1 for update; ... 作一些其余处理... |
mysql> set autocommit = 0; Query OK, 0 rows affected (0.00 sec) mysql> select * from table_2 where id=1 for update; ... |
select * from table_2 where id =1 for update; 因session_2已取得排他锁,等待 |
作一些其余处理... |
mysql> select * from table_1 where where id=1 for update; 死锁 |
也就是咱们死锁产生的条件,互相持有资源不释放,还有环形等待。
发生死锁后,InnoDB通常都能自动检测到,并使一个事务释放锁并回退,另外一个事务得到锁,继续完成事务。但在涉及外部锁,或涉及表锁的状况下,InnoDB并不能彻底自动检测到死锁,这须要经过设置锁等待超时参数 innodb_lock_wait_timeout来解决。须要说明的是,这个参数并非只用来解决死锁问题,在并发访问比较高的状况下,若是大量事务因没法当即得到所需的锁而挂起,会占用大量计算机资源,形成严重性能问题,甚至拖跨数据库。咱们经过设置合适的锁等待超时阈值,能够避免这种状况发生。
这是一篇学习文章,关于MySQL的锁机制又多了几分了解,之后在写SQL和排查问题时候,尽可能避免死锁和更快定位问题所在。