MySQL锁机制

进一步学习MySQL

为何要学习锁机制

锁是计算机协调多个进程或线程并发访问某一资源的机制。html

由于数据也是一种供许多用户共享的资源,如何保证数据并发访问的一致性、有效性是全部数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素,因此进一步学习MySQL,就须要去了解它的锁机制。mysql

本文主要记录学习了 MyISAM 和 InnoDB 这两个存储引擎,并且更加关注的是 InnoDB(由于常常用😁)git


MySQL锁概述:

相对其余数据库而言,MySQL 的锁机制比较简单,其最显著的特色是不一样的存储引擎支持不一样的锁机制。好比,MyISAM和MEMORY存储引擎采用的是表级锁(table-level locking);BDB存储引擎采用的是页面锁(page-level locking),但也支持表级锁;InnoDB存储引擎既支持行级锁(row-level locking),也支持表级锁,但默认状况下是采用行级锁。 MySQL这3种锁的特性可大体概括以下。github

开销、加锁速度、死锁、粒度、并发性能 ①:表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的几率最高,并发度最低。spring

②:行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的几率最低,并发度也最高。sql

③:页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度通常。数据库

从上述特色可见,很难笼统地说哪一种锁更好,只能就具体应用的特色来讲哪一种锁更合适!仅从锁的角度来讲:表级锁更适合于以查询为主,只有少许按索引条件更新数据的应用,如Web应用;而行级锁则更适合于有大量按索引条件并发更新少许不一样数据,同时又有并发查询的应用,如一些在线事务处理(OLTP)系统。因为BDB已经被InnoDB取代,即将成为历史(因此如今基本都在使用InnoDB存储引擎)。session


MyISAN存储引擎

MyISAM 存储引擎只支持表锁,这也是 MySQL 开始几个版本中惟一支持的锁类型。数据结构

MySQL表级锁

查询表锁争用状况

mysql> show status like 'table%';
+----------------------------+-------+
| Variable_name              | Value |
+----------------------------+-------+
| Table_locks_immediate      | 4     |
| Table_locks_waited         | 0     |
| Table_open_cache_hits      | 4     |
| Table_open_cache_misses    | 8     |
| Table_open_cache_overflows | 0     |
+----------------------------+-------+
5 rows in set (0.00 sec)
复制代码

若是 Table_locks_waited 的值比较高,则说明存在着较严重的表级锁争用状况。并发


MySQL的表级锁的两种模式

  • 表共享读锁(Table Read Lock)
  • 表独占写锁(Table Write Lock)

MySQL中的表锁兼容性:

请求锁模式
矩阵结果表示是否兼容
当前锁模式
None 读锁 写锁
读锁
写锁

也就是说,在MyISAM读模式下,不会阻塞其它用户的同一表读操做,可是会阻塞写操做;而在写模式下,会同时阻塞其它用户同一表的读写操做。


测试MyISAM的写锁模式

新建一个user表,引擎是MyISAM:

mysql> desc user;
+---------+-------------+------+-----+---------+----------------+
| Field   | Type        | Null | Key | Default | Extra          |
+---------+-------------+------+-----+---------+----------------+
| id      | int(11)     | NO   | PRI | NULL    | auto_increment |
| name    | varchar(20) | YES  |     | NULL    |                |
| age     | int(3)      | YES  |     | NULL    |                |
| address | varchar(60) | YES  |     | NULL    |                |
+---------+-------------+------+-----+---------+----------------+
4 rows in set (0.01 sec)
复制代码
session A session B
得到user表的锁锁定
mysql> lock table user write;
Query OK, 0 rows affected (0.00 sec)
mysql>select * from user;
Empty set (0.00 sec)
mysql> insert into user(id, name, age, address) values(1, 'test', 18, 'test address');
Query OK,1 row affected (0.02 sec)
mysql> select * from user\G
被阻塞了,一直卡住在这,没有返回结果
mysql> unlock tables;
Query OK, 0 rows affected (0.00 sec)
等待
mysql> select * from user\G
**********
name: test
age: 18
address: test address
1 row in set (5 min 29.61 sec)

能够看出,经过lock table user write将user表锁住后,其它用户进行对该表操做时,都会被阻塞。


测试MyISAM读锁

在用LOCK TABLES给表显式加表锁时,必须同时取得全部涉及到表的锁,而且MySQL不支持锁升级。也就是说,在执行LOCK TABLES后,只能访问显式加锁的这些表,不能访问未加锁的表;同时,若是加的是读锁,那么只能执行查询操做,而不能执行更新操做。其实,在自动加锁的状况下也基本如此,MyISAM老是一次得到SQL语句所须要的所有锁。这也正是MyISAM表不会出现死锁(Deadlock Free)的缘由。

session A session B
得到user表的读锁定
mysql> lock table user read;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from user where id = 1 \G
中从查询速度中能够看出,sessionB并无被阻塞
1 row in set (0.00 sec)
因为没有获取order表的读锁定,因此不能查询order表
mysql> select * from order;
ERROR 1100 (HY000): Table 'order' was not locked with LOCK TABLES
可是session B能够访问oder表,不阻塞
mysql> select * from order;
Empty set (0.00 sec)
得到读锁定时,不能进行写操做
mysql> update user set name = 'wahaha' where id = 1;
ERROR 1099 (HY000): Table 'user' was locked with a READ lock and can't be updated
其它session进行更新操做时,会被阻塞
mysql> update user set name = 'wahaha' where id = 1;
等待ing
释放锁
mysql> unlock tables;
Query OK, 0 rows affected (0.00 sec)
等待
mysql> update user set name = 'wahaha' where id = 1;
Query OK, 1 row affected (1 min 6.43 sec)

MyISAM支持并发插入

MyISAM表的读和写是串行的,但这是就整体而言的。在必定条件下,MyISAM表也支持查询和插入操做的并发进行。MyISAM存储引擎有一个系统变量concurrent_insert,专门用以控制其并发插入的行为,其值分别能够为0、1或2。

  • 当concurrent_insert设置为0时,不容许并发插入。
  • 当concurrent_insert设置为1时,若是MyISAM表中没有空洞(即表的中间没有被删除的行),MyISAM容许在一个进程读表的同时,另外一个进程从表尾插入记录。这也是MySQL的默认设置。
  • 当concurrent_insert设置为2时,不管MyISAM表中有没有空洞,都容许在表尾并发插入记录。

MyISAM的锁调度

MyISAM存储引擎的读锁和写锁是互斥的,读写操做是串行的。 但它认为写锁的优先级比读锁高,因此即便读请求先到锁等待队列,写请求后到,写锁也会插到读锁请求以前! 这也正是MyISAM表不太适合于有大量更新操做和查询操做应用的缘由,由于,大量的更新操做会形成查询操做很难得到读锁,从而可能永远阻塞。 能够经过一些设置来调节MyISAM的调度行为。

  • 经过指定启动参数low-priority-updates,使MyISAM引擎默认给予读请求以优先的权利。
  • 经过执行命令SET LOW_PRIORITY_UPDATES=1,使该链接发出的更新请求优先级下降。
  • 经过指定INSERT、UPDATE、DELETE语句的LOW_PRIORITY属性,下降该语句的优先级。

虽然上面3种方法都是要么更新优先,要么查询优先的方法,但仍是能够用其来解决查询相对重要的应用(如用户登陆系统)中,读锁等待严重的问题。 另外,MySQL也提供了一种折中的办法来调节读写冲突,即给系统参数max_write_lock_count设置一个合适的值,当一个表的读锁达到这个值后,MySQL就暂时将写请求的优先级下降,给读进程必定得到锁的机会。 上面已经讨论了写优先调度机制带来的问题和解决办法。这里还要强调一点:一些须要长时间运行的查询操做,也会使写进程“饿死”!所以,应用中应尽可能避免出现长时间运行的查询操做,不要总想用一条SELECT语句来解决问题,由于这种看似巧妙的SQL语句,每每比较复杂,执行时间较长,在可能的状况下能够经过使用中间表等措施对SQL语句作必定的“分解”,使每一步查询都能在较短期完成,从而减小锁冲突。若是复杂查询不可避免,应尽可能安排在数据库空闲时段执行,好比一些按期统计能够安排在夜间执行。


InnoDB

InnoDB与MyISAM的最大不一样有两点:一是支持事务(TRANSACTION);二是采用了行级锁。行级锁与表级锁原本就有许多不一样之处,另外,事务的引入也带来了一些新问题。

事务概念

学习Spring的时候,通常经过注解@Transitional就能启动spring的事务管理,在MySQL中也一样支持事务的四个原则ACID

  • A(Atomicity)原子性: 事务是一个原子操做单元,其对数据的修改,要么全都执行,要么全都不执行。
  • C(Consistent)一致性: 在事务开始和完成时,数据都必须保持一致状态。这意味着全部相关的数据规则都必须应用于事务的修改,以保持数据的完整性;事务结束时,全部的内部数据结构(如B树索引或双向链表)也都必须是正确的。
  • I(Isolation)隔离性: 数据库系统提供必定的隔离机制,保证事务在不受外部并发操做影响的“独立”环境执行。这意味着事务处理过程当中的中间状态对外部是不可见的,反之亦然。
  • D(Durable)持久性: 事务完成以后,它对于数据的修改是永久性的,即便出现系统故障也可以保持。

并发事务处理带来的问题

相对于串行处理来讲,并发事务处理能大大增长数据库资源的利用率,提升数据库系统的事务吞吐量,从而能够支持更多的用户。但并发事务处理也会带来一些问题,主要包括如下几种状况。

  • 更新丢失(Last update):A和B同时对一行数据进行处理,A修改后进行保存,而后B修改后进行保存,这样A的更新被覆盖了,至关于发生丢失更新的问题。因此能够在A事务未结束前,B不能访问该记录,这样就能避免更新丢失的问题。
  • 脏读(Dirty Reads):A事务在对一条记录作修改,但还未提交,这条记录处于不一致的状态;这时,B事务也来读同一条记录,这时若是没有加控制,B读了未修改前的数据,并根据该数据进行进一步处理,就会产生未提交的数据依赖关系。这种现象叫作“脏读”
  • 不可重复读(Non-Repeatable Reads):B事务在读取某些数据后的某个时间,再次读取之前读过的数据,却发现其读出的数据已经发生了改变(被更新或者删除了,例如A事务修改了)。这种现象叫作“不可重复读”。
  • 幻读(Phantom Reads):A事务按照相同查询条件,从新读取以前检索过得内容,却发现其它事务插入或修改其查询条件的新数据,这种现象就叫”幻读“。

事务的隔离级别

数据库的事务隔离越严格,并发反作用越小,但付出的代价也就越大,由于事务隔离实质上就是使事务在必定程度上 “串行化”进行,这显然与“并发”是矛盾的。同时,不一样的应用对读一致性和事务隔离程度的要求也是不一样的,好比许多应用对“不可重复读”和“幻读”并不敏感,可能更关心数据并发访问的能力。

4种隔离级别比较

读数据一致性及容许的并发反作用
隔离级别
读数据一致性 脏读 不可重复读 幻读
未提交读(Read uncommitted) 最低级别,只能保证不读取
物理上损害的数据
已提交读(Read committed) 语句级
可重复读(Repeatable read) 事务级
可序列化(Serializable) 最高级别,事务级

获取InnoDB行锁争用状况

检查InnoDB_row_lock状态变量来分析:

mysql> show status like 'InnoDB_row_lock%';
+-------------------------------+-------+
| Variable_name                 | Value |
+-------------------------------+-------+
| Innodb_row_lock_current_waits | 0     |
| Innodb_row_lock_time          | 0     |
| Innodb_row_lock_time_avg      | 0     |
| Innodb_row_lock_time_max      | 0     |
| Innodb_row_lock_waits         | 0     |
+-------------------------------+-------+
5 rows in set (0.00 sec)
复制代码

若是InnoDB_row_lock_waits和InnoDB_row_lock_time_avg的值比较高,表示锁争用状况比较严重。


InnoDB的行锁模式以及加锁方法

InnoDB实现了一下两种类型的行锁:

  • 共享锁(S):容许一个事务去多一行,阻止其它事务得到相同数据集的排他锁。
  • 排他锁(X): 容许得到排他锁的事务更新数据,阻止其它事务得到相同数据集的共享锁和排他写锁。

另外,为了容许行锁和表锁共存,实现多粒度锁机制,InnoDB还有两种内部使用的意向锁(Intention Locks),这两种意向锁都是表锁。(感受与MyISAM的表锁机制相似)

  • 意向共享锁(IS):事务打算给数据行加行共享锁,事务在给一个数据行加共享锁前必须先取得该表的IS锁。
  • 意向排他锁(IX):事务打算给数据行加行排他锁,事务在给一个数据行加排他锁前必须先取得该表的IX锁。

InnoDB行锁模式兼容性列表:

请求锁模式
矩阵结果表示是否兼容
当前锁模式
X IX S IS
X 冲突 冲突 冲突 冲突
IX 冲突 兼容 冲突 兼容
S 冲突 冲突 兼容 兼容
IS 冲突 兼容 兼容 兼容

若是一个事务请求的锁模式与当前的锁兼容,InnoDB就将请求的锁授予该事务;反之,若是二者不兼容,该事务就要等待锁释放。 意向锁是InnoDB自动加的;对于UPDATE、DELETE和INSERT语句,InnoDB会自动给设计数据集加排他锁(X);对于普通的SELECT语句,InnoDB不会加锁。 能够经过如下语句显示给记录集加共享锁或排他锁:

  • 共享锁(S):SELECT * FROM TABLE_NAME WHERE ... LOCK IN SHARE MODE.
  • 排他锁(X):SELECT * FROM TABLE_NAME WHERE ... FOR UPDATE.

用SELECT ... IN SHARE MODE得到共享锁,主要用在须要数据依存关系时来确认某行记录是否存在,并确保没有人对这个记录进行UPDATE或者DELETE操做。可是若是当前事务也须要对该记录进行更新操做,则颇有可能形成死锁,对于锁定行记录后须要进行更新操做的应用,应该使用SELECT... FOR UPDATE方式得到排他锁。

因此在使用共享锁模式下,查询完数据后不要进行更新操做,否则又可能会形成死锁;要更新数据,应该使用排他锁模式。


InnoDB行锁实现方式

InnoDB行锁是经过给索引上的索引项加锁来实现的,这一点MySQL与Oracle不一样,后者是经过在数据块中对相应数据行加锁来实现的。InnoDB这种行锁实现特色意味着:只有经过索引条件检索数据,InnoDB才使用行级锁,不然,InnoDB将使用表锁!(这个问题遇到过,因为没加索引,行锁变表锁

  • 在不经过索引条件查询的时候,InnoDB确实使用的是表锁,而不是行锁。
  • 因为MySQL的行锁是针对索引加的锁,不是针对记录加的锁,因此虽然是访问不一样行的记录,可是若是是使用相同的索引键,是会出现锁冲突的。
  • 当表有多个索引的时候,不一样的事务可使用不一样的索引锁定不一样的行,另外,不管是使用主键索引、惟一索引或普通索引,InnoDB都会使用行锁来对数据加锁。
  • 即使在条件中使用了索引字段,可是否使用索引来检索数据是由MySQL经过判断不一样执行计划的代价来决定的,若是MySQL认为全表扫描效率更高,好比对一些很小的表,它就不会使用索引,这种状况下InnoDB将使用表锁,而不是行锁。

能够经过explain执行计划查看是否真正使用了索引。


间隙锁(Next-key锁)

当咱们用范围条件而不是相等条件检索数据,并请求共享或排他锁时,InnoDB会给符合条件的已有数据记录的索引项加锁;对于键值在条件范围内但并不存在的记录,叫作“间隙(GAP)”,InnoDB也会对这个“间隙”加锁,这种锁机制就是所谓的间隙锁(Next-Key锁)。

举个🌰:

假如emp表中只有101条记录,其id的值从1~101,下面的sql: select * from emp where id > 100 for update; 是范围条件查询,InnoDB不只会对符合条件的id值为101的记录加锁,也会对id大于101(并不存在的值)的“间隙”加锁。

结论:

很显然,在使用范围条件检索并锁定记录时,InnoDB这种加锁机制会阻塞符合条件范围内键值的并发插入,这每每会形成严重的锁等待。所以,在实际应用开发中,尤为是并发插入比较多的应用,咱们要尽可能优化业务逻辑,尽可能使用相等条件来访问更新数据,避免使用范围条件。


关于死锁(DeadLock)

上面知识点说过,MyISAM表锁是deadlock free的,这是由于MyISAM老是一次得到所需的所有锁,要么所有知足,要么等待,所以不会出现死锁。但在InnoDB中,除单个SQL组成的事务外,锁是逐步或得的,因此InnoDB发生死锁是可能的。

举个🌰:

session A session B
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from table_1 where where id=1 for update;
...
作一些其余处理...
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from table_2 where id=1 for update;
...
select * from table_2 where id =1 for update;
因session_2已取得排他锁,等待
作一些其余处理...
mysql> select * from table_1 where where id=1 for update;
死锁

也就是咱们死锁产生的条件,互相持有资源不释放,还有环形等待。

发生死锁后,InnoDB通常都能自动检测到,并使一个事务释放锁并回退,另外一个事务得到锁,继续完成事务。但在涉及外部锁,或涉及表锁的状况下,InnoDB并不能彻底自动检测到死锁,这须要经过设置锁等待超时参数 innodb_lock_wait_timeout来解决。须要说明的是,这个参数并非只用来解决死锁问题,在并发访问比较高的状况下,若是大量事务因没法当即得到所需的锁而挂起,会占用大量计算机资源,形成严重性能问题,甚至拖跨数据库。咱们经过设置合适的锁等待超时阈值,能够避免这种状况发生。

避免死锁的方法

  1. 在应用中,若是不一样的程序会并发存取多个表,应尽可能约定以相同的顺序来访问表,这样能够大大下降产生死锁的机会。在下面的例子中,因为两个session访问两个表的顺序不一样,发生死锁的机会就很是高!但若是以相同的顺序来访问,死锁就能够避免。
  2. 在程序以批量方式处理数据的时候,若是事先对数据排序,保证每一个线程按固定的顺序来处理记录,也能够大大下降出现死锁的可能。
  3. 在事务中,若是要更新记录,应该直接申请足够级别的锁,即排他锁,而不该先申请共享锁,更新时再申请排他锁,由于当用户申请排他锁时,其余事务可能又已经得到了相同记录的共享锁,从而形成锁冲突,甚至死锁。
  4. 在REPEATABLE-READ隔离级别下,若是两个线程同时对相同条件记录用SELECT...FOR UPDATE加排他锁,在没有符合该条件记录状况下,两个线程都会加锁成功。程序发现记录尚不存在,就试图插入一条新记录,若是两个线程都这么作,就会出现死锁。这种状况下,将隔离级别改为READ COMMITTED,就可避免问题。
  5. 当隔离级别为READ COMMITTED时,若是两个线程都先执行SELECT...FOR UPDATE,判断是否存在符合条件的记录,若是没有,就插入记录。此时,只有一个线程能插入成功,另外一个线程会出现锁等待,当第1个线程提交后,第2个线程会因主键重出错,但虽然这个线程出错了,却会得到一个排他锁!这时若是有第3个线程又来申请排他锁,也会出现死锁。
    • 对于这种状况,能够直接作插入操做,而后再捕获主键重异常,或者在遇到主键重错误时,老是执行ROLLBACK释放得到的排他锁

小结

这是一篇学习文章,关于MySQL的锁机制又多了几分了解,之后在写SQL和排查问题时候,尽可能避免死锁和更快定位问题所在。

参考文章

  1. mysql什么状况下会触发表锁
相关文章
相关标签/搜索