本页包含内容:html
属性将值跟特定的类、结构或枚举关联。存储属性存储常量或变量做为实例的一部分,而计算属性计算(不是存储)一个值。计算属性能够用于类、结构体和枚举,存储属性只能用于类和结构体。ios
存储属性和计算属性一般与特定类型的实例关联。可是,属性也能够直接做用于类型自己,这种属性称为类型属性。编程
另外,还能够定义属性观察器来监控属性值的变化,以此来触发一个自定义的操做。属性观察器能够添加到本身定义的存储属性上,也能够添加到从父类继承的属性上。swift
简单来讲,一个存储属性就是存储在特定类或结构体的实例里的一个常量或变量。存储属性能够是变量存储属性(用关键字var
定义),也能够是常量存储属性(用关键字let
定义)。后端
能够在定义存储属性的时候指定默认值,请参考默认构造器一节。也能够在构造过程当中设置或修改存储属性的值,甚至修改常量存储属性的值,请参考构造过程当中常量属性的修改一节。数组
下面的例子定义了一个名为FixedLengthRange
的结构体,它描述了一个在建立后没法修改值域宽度的区间:闭包
struct FixedLengthRange { var firstValue: Int let length: Int } var rangeOfThreeItems = FixedLengthRange(firstValue: 0, length: 3) // 该区间表示整数0,1,2 rangeOfThreeItems.firstValue = 6 // 该区间如今表示整数6,7,8
FixedLengthRange
的实例包含一个名为firstValue
的变量存储属性和一个名为length
的常量存储属性。在上面的例子中,length
在建立实例的时候被初始化,由于它是一个常量存储属性,因此以后没法修改它的值。app
若是建立了一个结构体的实例并将其赋值给一个常量,则没法修改该实例的任何属性,即便定义了变量存储属性:编程语言
let rangeOfFourItems = FixedLengthRange(firstValue: 0, length: 4) // 该区间表示整数0,1,2,3 rangeOfFourItems.firstValue = 6 // 尽管 firstValue 是个变量属性,这里仍是会报错
由于rangeOfFourItems
被声明成了常量(用let
关键字),即便firstValue
是一个变量属性,也没法再修改它了。ide
这种行为是因为结构体(struct)属于值类型。当值类型的实例被声明为常量的时候,它的全部属性也就成了常量。
属于引用类型的类(class)则不同。把一个引用类型的实例赋给一个常量后,仍然能够修改该实例的变量属性。
延迟存储属性是指当第一次被调用的时候才会计算其初始值的属性。在属性声明前使用lazy
来标示一个延迟存储属性。
注意
必须将延迟存储属性声明成变量(使用var
关键字),由于属性的初始值可能在实例构造完成以后才会获得。而常量属性在构造过程完成以前必需要有初始值,所以没法声明成延迟属性。
延迟属性颇有用,当属性的值依赖于在实例的构造过程结束后才会知道具体值的外部因素时,或者当得到属性的初始值须要复杂或大量计算时,能够只在须要的时候计算它。
下面的例子使用了延迟存储属性来避免复杂类中没必要要的初始化。例子中定义了DataImporter
和DataManager
两个类,下面是部分代码:
class DataImporter { /* DataImporter 是一个负责将外部文件中的数据导入的类。 这个类的初始化会消耗很多时间。 */ var fileName = "data.txt" // 这里会提供数据导入功能 } class DataManager { lazy var importer = DataImporter() var data = [String]() // 这里会提供数据管理功能 } let manager = DataManager() manager.data.append("Some data") manager.data.append("Some more data") // DataImporter 实例的 importer 属性尚未被建立
DataManager
类包含一个名为data
的存储属性,初始值是一个空的字符串(String
)数组。这里没有给出所有代码,只需知道DataManager
类的目的是管理和提供对这个字符串数组的访问便可。
DataManager
的一个功能是从文件导入数据。该功能由DataImporter
类提供,DataImporter
完成初始化须要消耗很多时间:由于它的实例在初始化时可能要打开文件,还要读取文件内容到内存。
DataManager
管理数据时也可能不从文件中导入数据。因此当DataManager
的实例被建立时,不必建立一个DataImporter
的实例,更明智的作法是第一次用到DataImporter
的时候才去建立它。
因为使用了lazy
,importer
属性只有在第一次被访问的时候才被建立。好比访问它的属性fileName
时:
print(manager.importer.fileName) // DataImporter 实例的 importer 属性如今被建立了 // 输出 "data.txt”
注意
若是一个被标记为lazy
的属性在没有初始化时就同时被多个线程访问,则没法保证该属性只会被初始化一次。
若是您有过 Objective-C 经验,应该知道 Objective-C 为类实例存储值和引用提供两种方法。除了属性以外,还可使用实例变量做为属性值的后端存储。
Swift 编程语言中把这些理论统一用属性来实现。Swift 中的属性没有对应的实例变量,属性的后端存储也没法直接访问。这就避免了不一样场景下访问方式的困扰,同时也将属性的定义简化成一个语句。属性的所有信息——包括命名、类型和内存管理特征——都在惟一一个地方(类型定义中)定义。
除存储属性外,类、结构体和枚举能够定义计算属性。计算属性不直接存储值,而是提供一个 getter 和一个可选的 setter,来间接获取和设置其余属性或变量的值。
struct Point { var x = 0.0, y = 0.0 } struct Size { var width = 0.0, height = 0.0 } struct Rect { var origin = Point() var size = Size() var center: Point { get { let centerX = origin.x + (size.width / 2) let centerY = origin.y + (size.height / 2) return Point(x: centerX, y: centerY) } set(newCenter) { origin.x = newCenter.x - (size.width / 2) origin.y = newCenter.y - (size.height / 2) } } } var square = Rect(origin: Point(x: 0.0, y: 0.0), size: Size(width: 10.0, height: 10.0)) let initialSquareCenter = square.center square.center = Point(x: 15.0, y: 15.0) print("square.origin is now at (\(square.origin.x), \(square.origin.y))") // 输出 "square.origin is now at (10.0, 10.0)”
这个例子定义了 3 个结构体来描述几何形状:
Point
封装了一个(x, y)
的坐标Size
封装了一个width
和一个height
Rect
表示一个有原点和尺寸的矩形Rect
也提供了一个名为center
的计算属性。一个矩形的中心点能够从原点(origin
)和尺寸(size
)算出,因此不须要将它以显式声明的Point
来保存。Rect
的计算属性center
提供了自定义的 getter 和 setter 来获取和设置矩形的中心点,就像它有一个存储属性同样。
上述例子中建立了一个名为square
的Rect
实例,初始值原点是(0, 0)
,宽度高度都是10
。以下图中蓝色正方形所示。
square
的center
属性能够经过点运算符(square.center
)来访问,这会调用该属性的 getter 来获取它的值。跟直接返回已经存在的值不一样,getter 实际上经过计算而后返回一个新的Point
来表示square
的中心点。如代码所示,它正确返回了中心点(5, 5)
。
center
属性以后被设置了一个新的值(15, 15)
,表示向右上方移动正方形到以下图橙色正方形所示的位置。设置属性center
的值会调用它的 setter 来修改属性origin
的x
和y
的值,从而实现移动正方形到新的位置。
若是计算属性的 setter 没有定义表示新值的参数名,则可使用默认名称newValue
。下面是使用了便捷 setter 声明的Rect
结构体代码:
struct AlternativeRect { var origin = Point() var size = Size() var center: Point { get { let centerX = origin.x + (size.width / 2) let centerY = origin.y + (size.height / 2) return Point(x: centerX, y: centerY) } set { origin.x = newValue.x - (size.width / 2) origin.y = newValue.y - (size.height / 2) } } }
只有 getter 没有 setter 的计算属性就是只读计算属性。只读计算属性老是返回一个值,能够经过点运算符访问,但不能设置新的值。
注意
必须使用var
关键字定义计算属性,包括只读计算属性,由于它们的值不是固定的。let
关键字只用来声明常量属性,表示初始化后再也没法修改的值。
只读计算属性的声明能够去掉get
关键字和花括号:
struct Cuboid { var width = 0.0, height = 0.0, depth = 0.0 var volume: Double { return width * height * depth } } let fourByFiveByTwo = Cuboid(width: 4.0, height: 5.0, depth: 2.0) print("the volume of fourByFiveByTwo is \(fourByFiveByTwo.volume)") // 输出 "the volume of fourByFiveByTwo is 40.0"
这个例子定义了一个名为Cuboid
的结构体,表示三维空间的立方体,包含width
、height
和depth
属性。结构体还有一个名为volume
的只读计算属性用来返回立方体的体积。为volume
提供 setter 毫无心义,由于没法肯定如何修改width
、height
和depth
三者的值来匹配新的volume
。然而,Cuboid
提供一个只读计算属性来让外部用户直接获取体积是颇有用的。
属性观察器监控和响应属性值的变化,每次属性被设置值的时候都会调用属性观察器,甚至新值和当前值相同的时候也不例外。
能够为除了延迟存储属性以外的其余存储属性添加属性观察器,也能够经过重写属性的方式为继承的属性(包括存储属性和计算属性)添加属性观察器。属性重写请参考重写。
注意
不须要为非重写的计算属性添加属性观察器,由于能够经过它的 setter 直接监控和响应值的变化。
能够为属性添加以下的一个或所有观察器:
willSet
在新的值被设置以前调用didSet
在新的值被设置以后当即调用willSet
观察器会将新的属性值做为常量参数传入,在willSet
的实现代码中能够为这个参数指定一个名称,若是不指定则参数仍然可用,这时使用默认名称newValue
表示。
相似地,didSet
观察器会将旧的属性值做为参数传入,能够为该参数命名或者使用默认参数名oldValue
。
注意
父类的属性在子类的构造器中被赋值时,它在父类中的willSet
和didSet
观察器会被调用。
有关构造器代理的更多信息,请参考值类型的构造器代理和类的构造器代理规则。
这里是一个willSet
和didSet
的实际例子,其中定义了一个名为StepCounter
的类,用来统计一我的步行时的总步数。这个类能够跟计步器或其余平常锻炼的统计装置的输入数据配合使用。
class StepCounter { var totalSteps: Int = 0 { willSet(newTotalSteps) { print("About to set totalSteps to \(newTotalSteps)") } didSet { if totalSteps > oldValue { print("Added \(totalSteps - oldValue) steps") } } } } let stepCounter = StepCounter() stepCounter.totalSteps = 200 // About to set totalSteps to 200 // Added 200 steps stepCounter.totalSteps = 360 // About to set totalSteps to 360 // Added 160 steps stepCounter.totalSteps = 896 // About to set totalSteps to 896 // Added 536 steps
StepCounter
类定义了一个Int
类型的属性totalSteps
,它是一个存储属性,包含willSet
和didSet
观察器。
当totalSteps
被设置新值的时候,它的willSet
和didSet
观察器都会被调用,甚至新值和当前值彻底相同时也会被调用。
例子中的willSet
观察器将表示新值的参数自定义为newTotalSteps
,这个观察器只是简单的将新的值输出。
didSet
观察器在totalSteps
的值改变后被调用,它把新值和旧值进行对比,若是总步数增长了,就输出一个消息表示增长了多少步。didSet
没有为旧值提供自定义名称,因此默认值oldValue
表示旧值的参数名。
注意
若是在一个属性的didSet
观察器里为它赋值,这个值会替换以前设置的值。
计算属性和属性观察器所描述的功能也能够用于全局变量和局部变量。全局变量是在函数、方法、闭包或任何类型以外定义的变量。局部变量是在函数、方法或闭包内部定义的变量。
前面章节提到的全局或局部变量都属于存储型变量,跟存储属性相似,它为特定类型的值提供存储空间,并容许读取和写入。
另外,在全局或局部范围均可以定义计算型变量和为存储型变量定义观察器。计算型变量跟计算属性同样,返回一个计算结果而不是存储值,声明格式也彻底同样。
注意
全局的常量或变量都是延迟计算的,跟延迟存储属性类似,不一样的地方在于,全局的常量或变量不须要标记lazy
修饰符。
局部范围的常量或变量从不延迟计算。
实例属性属于一个特定类型的实例,每建立一个实例,实例都拥有属于本身的一套属性值,实例之间的属性相互独立。
也能够为类型自己定义属性,不管建立了多少个该类型的实例,这些属性都只有惟一一份。这种属性就是类型属性。
类型属性用于定义某个类型全部实例共享的数据,好比全部实例都能用的一个常量(就像 C 语言中的静态常量),或者全部实例都能访问的一个变量(就像 C 语言中的静态变量)。
存储型类型属性能够是变量或常量,计算型类型属性跟实例的计算型属性同样只能定义成变量属性。
注意
跟实例的存储型属性不一样,必须给存储型类型属性指定默认值,由于类型自己没有构造器,也就没法在初始化过程当中使用构造器给类型属性赋值。
存储型类型属性是延迟初始化的,它们只有在第一次被访问的时候才会被初始化。即便它们被多个线程同时访问,系统也保证只会对其进行一次初始化,而且不须要对其使用lazy
修饰符。
在 C 或 Objective-C 中,与某个类型关联的静态常量和静态变量,是做为全局(global)静态变量定义的。可是在 Swift 中,类型属性是做为类型定义的一部分写在类型最外层的花括号内,所以它的做用范围也就在类型支持的范围内。
使用关键字static
来定义类型属性。在为类定义计算型类型属性时,能够改用关键字class
来支持子类对父类的实现进行重写。下面的例子演示了存储型和计算型类型属性的语法:
struct SomeStructure { static var storedTypeProperty = "Some value." static var computedTypeProperty: Int { return 1 } } enum SomeEnumeration { static var storedTypeProperty = "Some value." static var computedTypeProperty: Int { return 6 } } class SomeClass { static var storedTypeProperty = "Some value." static var computedTypeProperty: Int { return 27 } class var overrideableComputedTypeProperty: Int { return 107 } }
注意
例子中的计算型类型属性是只读的,但也能够定义可读可写的计算型类型属性,跟计算型实例属性的语法相同。
跟实例属性同样,类型属性也是经过点运算符来访问。可是,类型属性是经过类型自己来访问,而不是经过实例。好比:
print(SomeStructure.storedTypeProperty) // 输出 "Some value." SomeStructure.storedTypeProperty = "Another value." print(SomeStructure.storedTypeProperty) // 输出 "Another value.” print(SomeEnumeration.computedTypeProperty) // 输出 "6" print(SomeClass.computedTypeProperty) // 输出 "27"
下面的例子定义了一个结构体,使用两个存储型类型属性来表示两个声道的音量,每一个声道具备0
到10
之间的整数音量。
下图展现了如何把两个声道结合来模拟立体声的音量。当声道的音量是0
,没有一个灯会亮;当声道的音量是10
,全部灯点亮。本图中,左声道的音量是9
,右声道的音量是7
:
上面所描述的声道模型使用AudioChannel
结构体的实例来表示:
struct AudioChannel { static let thresholdLevel = 10 static var maxInputLevelForAllChannels = 0 var currentLevel: Int = 0 { didSet { if currentLevel > AudioChannel.thresholdLevel { // 将当前音量限制在阀值以内 currentLevel = AudioChannel.thresholdLevel } if currentLevel > AudioChannel.maxInputLevelForAllChannels { // 存储当前音量做为新的最大输入音量 AudioChannel.maxInputLevelForAllChannels = currentLevel } } } }
结构AudioChannel
定义了 2 个存储型类型属性来实现上述功能。第一个是thresholdLevel
,表示音量的最大上限阈值,它是一个值为10
的常量,对全部实例均可见,若是音量高于10
,则取最大上限值10
(见后面描述)。
第二个类型属性是变量存储型属性maxInputLevelForAllChannels
,它用来表示全部AudioChannel
实例的最大音量,初始值是0
。
AudioChannel
也定义了一个名为currentLevel
的存储型实例属性,表示当前声道如今的音量,取值为0
到10
。
属性currentLevel
包含didSet
属性观察器来检查每次设置后的属性值,它作以下两个检查:
currentLevel
的新值大于容许的阈值thresholdLevel
,属性观察器将currentLevel
的值限定为阈值thresholdLevel
。currentLevel
值大于静态类型属性maxInputLevelForAllChannels
的值,属性观察器就将新值保存在maxInputLevelForAllChannels
中。注意
在第一个检查过程当中,didSet
属性观察器将currentLevel
设置成了不一样的值,但这不会形成属性观察器被再次调用。
可使用结构体AudioChannel
建立两个声道leftChannel
和rightChannel
,用以表示立体声系统的音量:
var leftChannel = AudioChannel() var rightChannel = AudioChannel()
若是将左声道的currentLevel
设置成7
,类型属性maxInputLevelForAllChannels
也会更新成7
:
leftChannel.currentLevel = 7 print(leftChannel.currentLevel) // 输出 "7" print(AudioChannel.maxInputLevelForAllChannels) // 输出 "7"
若是试图将右声道的currentLevel
设置成11
,它会被修正到最大值10
,同时maxInputLevelForAllChannels
的值也会更新到10
:
rightChannel.currentLevel = 11 print(rightChannel.currentLevel) // 输出 "10" print(AudioChannel.maxInputLevelForAllChannels) // 输出 "10"