尽管pytorch 已经集成了tensorboard的接口,可是你还要下载安装tensorboard工具。python
下载tensorboard:浏览器
pip install tensorboard.
不行的话,再安装tensorboardX,是早些时候专门给pytorch用的tensorboard。bash
pip install tensorboardX。
tensorboard用网页的方式把不少的信息都展示出来,比较方便。上方image和graph分别表明你训练的数据和你的深度学习网络结构图。网络
定义一个学习网络,来分类FashionMNIST,在SummaryWriter的时候,就开始用tensorboard了。
我会分段讲解,可是最好是先在文末拷贝总体代码再回来对照代码看。ide
首先import,和定义一些工具类,没什么好说的。get_num_correct函数是获得预测结果和label相同数目的函数。函数
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable import torchvision import torchvision.transforms as transforms from torch.utils.tensorboard import SummaryWriter def get_num_correct(preds,labels): return preds.argmax(dim=1).eq(labels).sum().item()
定义网络工具
class Network(nn.Module): def __init__(self): super().__init__() self.conv1=nn.Conv2d(in_channels=1,out_channels=6,kernel_size=5) self.conv2 = nn.Conv2d(in_channels=6, out_channels=12, kernel_size=5) self.fc1=nn.Linear(in_features=12*4*4,out_features=120) self.fc2 = nn.Linear(in_features=120, out_features=60) self.out = nn.Linear(in_features=60, out_features=10) def forward(self, t): t=F.relu(self.conv1(t)) t=F.max_pool2d(t,kernel_size=2,stride=2) t = F.relu(self.conv2(t)) t = F.max_pool2d(t,kernel_size=2,stride=2) t=t.flatten(start_dim=1) t=F.relu(self.fc1(t)) t=F.relu(self.fc2(t)) t=self.out(t) return t
main函数里面,经过pytorch的工具类torchvision导入MNIST数据集,而后用data loader加载进来,为训练作准备。学习
if __name__ == '__main__': train_set=torchvision.datasets.FashionMNIST( root='./data-source', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor() ]) ) train_loader=torch.utils.data.DataLoader(train_set,batch_size=100,shuffle=True)
(续上main函数)接着声明的summary writer就是用到tensorboard的类,tensorboard可以记录模型学过程当中的不少量,而后用图表的方式显示出来。spa
#tensor board tb=SummaryWriter() network=Network() #取出训练用图 images,labels=next(iter(train_loader)) grid=torchvision.utils.make_grid(images) #想用tensorboard看什么,你就tb.add什么。image、graph、scalar等 tb.add_image('images', grid) tb.add_graph(model=network,input_to_model=images) tb.close() exit(0)
写好代码以后,运行一遍,看有没有错误,有错误的地方tensorboard不会储存也不会显示。scala
运行以后这个目录下会出现runs目录,里面储存量tensorboard要显示的数据。
而后在这个目录下cmd,指定吧runs目录下的数据在tensorboard显示,开启tensorboard服务
tensorboard --logdir=runs
而后会出现这个
这样在浏览器访问本地服务6006端口就能够看到开头的效果了。
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable import torchvision import torchvision.transforms as transforms from torch.utils.tensorboard import SummaryWriter def get_num_correct(preds,labels): return preds.argmax(dim=1).eq(labels).sum().item() class Network(nn.Module): def __init__(self): super().__init__() self.conv1=nn.Conv2d(in_channels=1,out_channels=6,kernel_size=5) self.conv2 = nn.Conv2d(in_channels=6, out_channels=12, kernel_size=5) self.fc1=nn.Linear(in_features=12*4*4,out_features=120) self.fc2 = nn.Linear(in_features=120, out_features=60) self.out = nn.Linear(in_features=60, out_features=10) def forward(self, t): t=F.relu(self.conv1(t)) t=F.max_pool2d(t,kernel_size=2,stride=2) t = F.relu(self.conv2(t)) t = F.max_pool2d(t,kernel_size=2,stride=2) t=t.flatten(start_dim=1) t=F.relu(self.fc1(t)) t=F.relu(self.fc2(t)) t=self.out(t) return t if __name__ == '__main__': train_set=torchvision.datasets.FashionMNIST( root='./data-source', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor() ]) ) train_loader=torch.utils.data.DataLoader(train_set,batch_size=100,shuffle=True) #tensor board tb=SummaryWriter() network=Network() #取出训练用图 images,labels=next(iter(train_loader)) grid=torchvision.utils.make_grid(images) #想用tensorboard看什么,你就tb.add什么。image、graph、scalar等 tb.add_image('images', grid) tb.add_graph(model=network,input_to_model=images) tb.close() exit(0)