pytorch+tensorboard可视化最简单例子

前言

尽管pytorch 已经集成了tensorboard的接口,可是你还要下载安装tensorboard工具。python

下载tensorboard:浏览器

pip install tensorboard.   

不行的话,再安装tensorboardX,是早些时候专门给pytorch用的tensorboard。bash

pip install tensorboardX。

效果

image
tensorboard用网页的方式把不少的信息都展示出来,比较方便。上方image和graph分别表明你训练的数据和你的深度学习网络结构图。网络

最简单的例子讲解

定义一个学习网络,来分类FashionMNIST,在SummaryWriter的时候,就开始用tensorboard了。
我会分段讲解,可是最好是先在文末拷贝总体代码再回来对照代码看。ide

首先import,和定义一些工具类,没什么好说的。get_num_correct函数是获得预测结果和label相同数目的函数。函数

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
 
import torchvision
import torchvision.transforms as transforms
 
from torch.utils.tensorboard import SummaryWriter

def get_num_correct(preds,labels):
    return preds.argmax(dim=1).eq(labels).sum().item()

定义网络工具

class Network(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1=nn.Conv2d(in_channels=1,out_channels=6,kernel_size=5)
        self.conv2 = nn.Conv2d(in_channels=6, out_channels=12, kernel_size=5)
        self.fc1=nn.Linear(in_features=12*4*4,out_features=120)
        self.fc2 = nn.Linear(in_features=120, out_features=60)
        self.out = nn.Linear(in_features=60, out_features=10)
    def forward(self, t):
        t=F.relu(self.conv1(t))
        t=F.max_pool2d(t,kernel_size=2,stride=2)
 
        t = F.relu(self.conv2(t))
        t = F.max_pool2d(t,kernel_size=2,stride=2)
 
        t=t.flatten(start_dim=1)
        t=F.relu(self.fc1(t))
 
        t=F.relu(self.fc2(t))
        t=self.out(t)
 
        return t

main函数里面,经过pytorch的工具类torchvision导入MNIST数据集,而后用data loader加载进来,为训练作准备。学习

if __name__ == '__main__':
    train_set=torchvision.datasets.FashionMNIST(
        root='./data-source',
        train=True,
        download=True,
        transform=transforms.Compose([
            transforms.ToTensor()
        ])
    )
 
    train_loader=torch.utils.data.DataLoader(train_set,batch_size=100,shuffle=True)

(续上main函数)接着声明的summary writer就是用到tensorboard的类,tensorboard可以记录模型学过程当中的不少量,而后用图表的方式显示出来。spa

#tensor board
    tb=SummaryWriter()
    network=Network()
#取出训练用图
    images,labels=next(iter(train_loader))
    grid=torchvision.utils.make_grid(images)
#想用tensorboard看什么,你就tb.add什么。image、graph、scalar等
    tb.add_image('images', grid)
    tb.add_graph(model=network,input_to_model=images)
    tb.close()
    exit(0)

写好代码以后,运行一遍,看有没有错误,有错误的地方tensorboard不会储存也不会显示。scala

运行以后这个目录下会出现runs目录,里面储存量tensorboard要显示的数据。

而后在这个目录下cmd,指定吧runs目录下的数据在tensorboard显示,开启tensorboard服务

tensorboard --logdir=runs

而后会出现这个
image
这样在浏览器访问本地服务6006端口就能够看到开头的效果了。

最后,完整代码

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
 
import torchvision
import torchvision.transforms as transforms
 
from torch.utils.tensorboard import SummaryWriter
 
def get_num_correct(preds,labels):
    return preds.argmax(dim=1).eq(labels).sum().item()
 
class Network(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1=nn.Conv2d(in_channels=1,out_channels=6,kernel_size=5)
        self.conv2 = nn.Conv2d(in_channels=6, out_channels=12, kernel_size=5)
        self.fc1=nn.Linear(in_features=12*4*4,out_features=120)
        self.fc2 = nn.Linear(in_features=120, out_features=60)
        self.out = nn.Linear(in_features=60, out_features=10)
    def forward(self, t):
        t=F.relu(self.conv1(t))
        t=F.max_pool2d(t,kernel_size=2,stride=2)
 
        t = F.relu(self.conv2(t))
        t = F.max_pool2d(t,kernel_size=2,stride=2)
 
        t=t.flatten(start_dim=1)
        t=F.relu(self.fc1(t))
 
        t=F.relu(self.fc2(t))
        t=self.out(t)
 
        return t
 
if __name__ == '__main__':
    train_set=torchvision.datasets.FashionMNIST(
        root='./data-source',
        train=True,
        download=True,
        transform=transforms.Compose([
            transforms.ToTensor()
        ])
    )
 
    train_loader=torch.utils.data.DataLoader(train_set,batch_size=100,shuffle=True)
 
    #tensor board
    tb=SummaryWriter()
    network=Network()
#取出训练用图
    images,labels=next(iter(train_loader))
    grid=torchvision.utils.make_grid(images)
#想用tensorboard看什么,你就tb.add什么。image、graph、scalar等
    tb.add_image('images', grid)
    tb.add_graph(model=network,input_to_model=images)
    tb.close()
    exit(0)
相关文章
相关标签/搜索