Spark源码分析之Checkpoint的过程

概述

checkpoint 的机制保证了须要访问重复数据的应用 Spark 的DAG执行图可能很庞大,task 中计算链可能会很长,这时若是 task 中途运行出错,那么 task 的整个须要重算很是耗时,所以,有必要将计算代价较大的 RDD checkpoint 一下,当下游 RDD 计算出错时,能够直接从 checkpoint 过的 RDD 那里读取数据继续算。apache

咱们先来看一个例子,checkpoint的使用:api

import org.apache.spark.SparkContext import org.apache.spark.SparkContext._ import org.apache.spark.SparkConf object CheckPointTest { def main(args: Array[String]) { val sc: SparkContext = SparkContext.getOrCreate(new SparkConf().setAppName("ck").setMaster("local[2]")) sc.setCheckpointDir("/Users/kinge/ck") val rdd: RDD[(String, Int)] = sc.textFile("").map{x=>(x,1) }.reduceByKey(_+_) rdd.checkpoint() rdd.count() rdd.groupBy(x=>x._2).collect().foreach(println) } }

checkpoint流程分析

checkpoint初始化

咱们能够看到最早调用了SparkContextsetCheckpointDir 设置了一个checkpoint 目录
咱们跟进这个方法看一下dom

/** * Set the directory under which RDDs are going to be checkpointed. The directory must * be a HDFS path if running on a cluster. */ def setCheckpointDir(directory: String) { // If we are running on a cluster, log a warning if the directory is local. // Otherwise, the driver may attempt to reconstruct the checkpointed RDD from // its own local file system, which is incorrect because the checkpoint files // are actually on the executor machines. if (!isLocal && Utils.nonLocalPaths(directory).isEmpty) { logWarning("Checkpoint directory must be non-local " + "if Spark is running on a cluster: " + directory) } //利用hadoop的api建立了一个hdfs目录 checkpointDir = Option(directory).map { dir => val path = new Path(dir, UUID.randomUUID().toString) val fs = path.getFileSystem(hadoopConfiguration) fs.mkdirs(path) fs.getFileStatus(path).getPath.toString } }

这个方法挺简单的,就建立了一个目录,接下来咱们看RDD核心的checkpoint 方法,跟进去ide

def checkpoint(): Unit = RDDCheckpointData.synchronized { if (context.checkpointDir.isEmpty) { throw new SparkException("Checkpoint directory has not been set in the SparkContext") } else if (checkpointData.isEmpty) { checkpointData = Some(new ReliableRDDCheckpointData(this)) } }

这个方法没有返回值,逻辑只有一个判断,checkpointDir刚才设置过了,不为空,而后建立了一个ReliableRDDCheckpointData,咱们来看ReliableRDDCheckpointDataoop

/** * An implementation of checkpointing that writes the RDD data to reliable storage. * This allows drivers to be restarted on failure with previously computed state. */ private[spark] class ReliableRDDCheckpointData[T: ClassTag](@transient rdd: RDD[T]) extends RDDCheckpointData[T](rdd) with Logging { 。。。。。 }

这个ReliableRDDCheckpointData的父类RDDCheckpointData咱们再继续看它的父类this

/** * RDD 须要通过 * [ Initialized --> CheckpointingInProgress--> Checkpointed ] * 这几个阶段才能被 checkpoint。 */ private[spark] object CheckpointState extends Enumeration { type CheckpointState = Value val Initialized, CheckpointingInProgress, Checkpointed = Value } private[spark] abstract class RDDCheckpointData[T: ClassTag](@transient rdd: RDD[T]) extends Serializable { import CheckpointState._ // The checkpoint state of the associated RDD. protected var cpState = Initialized 。。。。。。 }
RDD 须要通过
[ Initialized --> CheckpointingInProgress--> Checkpointed ]
这几个阶段才能被 checkpoint。
这类里面有一个枚举来标识CheckPoint的状态,第一次初始化时是Initialized。
checkpoint这个一步已经完成了,回到咱们的RDD成员变量里checkpointData这个变量指向的RDDCheckpointData的实例。
Checkpoint初始化时序图:

checkpoint何时写入数据

咱们知道一个spark job运行最终会调用SparkContextrunJob方法将任务提交给Executor去执行,咱们来看runJobatom

def runJob[T, U: ClassTag]( rdd: RDD[T], func: (TaskContext, Iterator[T]) => U, partitions: Seq[Int], resultHandler: (Int, U) => Unit): Unit = { if (stopped.get()) { throw new IllegalStateException("SparkContext has been shutdown") } val callSite = getCallSite val cleanedFunc = clean(func) logInfo("Starting job: " + callSite.shortForm) if (conf.getBoolean("spark.logLineage", false)) { logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString) } dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get) progressBar.foreach(_.finishAll()) rdd.doCheckpoint() }

最后一行代码调用了doCheckpoint,在dagScheduler将任务提交给集群运行以后,我来看这个doCheckpoint方法spa

private[spark] def doCheckpoint(): Unit = { RDDOperationScope.withScope(sc, "checkpoint", allowNesting = false, ignoreParent = true) { if (!doCheckpointCalled) { doCheckpointCalled = true if (checkpointData.isDefined) { checkpointData.get.checkpoint() } else { //遍历依赖的rdd,调用每一个rdd的doCheckpoint方法 dependencies.foreach(_.rdd.doCheckpoint()) } } } }
这个是一个递归,遍历RDD依赖链条,当rdd是checkpointData不为空时,调用checkpointDatacheckpoint()方法。还记得checkpointData类型是什么吗?就是RDDCheckpointData ,咱们来看它的checkpoint方法,如下
final def checkpoint(): Unit = { // Guard against multiple threads checkpointing the same RDD by // atomically flipping the state of this RDDCheckpointData  RDDCheckpointData.synchronized { if (cpState == Initialized) { //一、标记当前状态为正在checkpoint中 cpState = CheckpointingInProgress } else { return } } //2 这里调用的是子类的doCheckpoint() val newRDD = doCheckpoint() // 3 标记checkpoint已完成,清空RDD依赖  RDDCheckpointData.synchronized { cpRDD = Some(newRDD) cpState = Checkpointed rdd.markCheckpointed() } }

这个方法开始作checkpoint操做了,将doCheckpoint交给子类去实现checkpoint的逻辑,咱们去看子类怎么实现doCheckpointdebug

protected override def doCheckpoint(): CheckpointRDD[T] = { // Create the output path for the checkpoint val path = new Path(cpDir) val fs = path.getFileSystem(rdd.context.hadoopConfiguration) if (!fs.mkdirs(path)) { throw new SparkException(s"Failed to create checkpoint path $cpDir") } //须要的配置文件(如 core-site.xml 等)broadcast 到其余 worker 节点的 blockManager。  val broadcastedConf = rdd.context.broadcast( new SerializableConfiguration(rdd.context.hadoopConfiguration)) //向集群提交一个Job去执行checkpoint操做,将RDD序列化到HDFS目录上  rdd.context.runJob(rdd, ReliableCheckpointRDD.writeCheckpointFile[T](cpDir, broadcastedConf) _) // 为该 rdd 生成一个新的依赖,设置该 rdd 的 parent rdd 为 //CheckpointRDD,该 CheckpointRDD 负责之后读取在文件系统上的 //checkpoint 文件,生成该 rdd 的 partition。 val newRDD = new ReliableCheckpointRDD[T](rdd.context, cpDir) if (newRDD.partitions.length != rdd.partitions.length) { throw new SparkException( s"Checkpoint RDD $newRDD(${newRDD.partitions.length}) has different " + s"number of partitions from original RDD $rdd(${rdd.partitions.length})") } // 是否清除checkpoint文件若是超出引用的资源范围 if (rdd.conf.getBoolean("spark.cleaner.referenceTracking.cleanCheckpoints", false)) { rdd.context.cleaner.foreach { cleaner => cleaner.registerRDDCheckpointDataForCleanup(newRDD, rdd.id) } } logInfo(s"Done checkpointing RDD ${rdd.id} to $cpDir, new parent is RDD ${newRDD.id}") // 将新产生的RDD返回给父类  newRDD }

上面的代码最终会返回新的CheckpointRDD ,父类将它赋值给成员变量cpRDD,最终标记当前状态为Checkpointed并清空当前RDD的依赖链。到此Checkpoint的数据就被序列化到HDFS上了。rest

 Checkpoint 写数据时序图

checkpoint何时读取数据

咱们知道Task是spark运行任务的最小单元,当Task执行失败的时候spark会从新计算,这里Task进行计算的地方就是读取checkpoint的入口。咱们能够看一下ShuffleMapTask 里的计算方法runTask,以下

override def runTask(context: TaskContext): MapStatus = { 。。。。。。。 try { val manager = SparkEnv.get.shuffleManager writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context) //调用rdd.iterator,迭代每一个partition里的数据,计算并写入磁盘 writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]]) writer.stop(success = true).get } catch { case e: Exception => try { if (writer != null) { writer.stop(success = false) } } catch { case e: Exception => log.debug("Could not stop writer", e) } throw e } }

这是spark真正调用计算方法的逻辑runTask调用 rdd.iterator() 去计算该 rdd 的 partition 的,咱们来看RDD的iterator()

final def iterator(split: Partition, context: TaskContext): Iterator[T] = { if (storageLevel != StorageLevel.NONE) { SparkEnv.get.cacheManager.getOrCompute(this, split, context, storageLevel) } else { computeOrReadCheckpoint(split, context) } }

这里会继续调用computeOrReadCheckpoint,咱们看该方法

** * Compute an RDD partition or read it from a checkpoint if the RDD is checkpointing. */ private[spark] def computeOrReadCheckpoint(split: Partition, context: TaskContext): Iterator[T] = { if (isCheckpointedAndMaterialized) { firstParent[T].iterator(split, context) } else { compute(split, context) } }
当调用rdd.iterator()去计算该 rdd 的 partition 的时候,会调用 computeOrReadCheckpoint(split: Partition)去查看该 rdd 是否被 checkpoint 过了,若是是,就调用该 rdd 的 parent rdd 的 iterator() 也就是 CheckpointRDD.iterator(),不然直接调用该RDD的compute, 那么咱们就跟进CheckpointRDDcompute
/** * Read the content of the checkpoint file associated with the given partition. */ override def compute(split: Partition, context: TaskContext): Iterator[T] = { val file = new Path(checkpointPath, ReliableCheckpointRDD.checkpointFileName(split.index)) ReliableCheckpointRDD.readCheckpointFile(file, broadcastedConf, context) }

这里就两行代码,意思是从Path上读取咱们的CheckPoint数据,看一下readCheckpointFile

/** * Read the content of the specified checkpoint file. */ def readCheckpointFile[T]( path: Path, broadcastedConf: Broadcast[SerializableConfiguration], context: TaskContext): Iterator[T] = { val env = SparkEnv.get // 用hadoop API 读取HDFS上的数据 val fs = path.getFileSystem(broadcastedConf.value.value) val bufferSize = env.conf.getInt("spark.buffer.size", 65536) val fileInputStream = fs.open(path, bufferSize) val serializer = env.serializer.newInstance() val deserializeStream = serializer.deserializeStream(fileInputStream) // Register an on-task-completion callback to close the input stream. context.addTaskCompletionListener(context => deserializeStream.close()) //反序列化数据后转换为一个Iterator deserializeStream.asIterator.asInstanceOf[Iterator[T]]

CheckpointRDD 负责读取文件系统上的文件,生成该 rdd 的 partition。这就解释了为何要为调用了checkpoint的RDD 添加一个 parent CheckpointRDD的缘由。
到此,整个checkpoint的流程就结束了。

Checkpoint 读取数据时序图

相关文章
相关标签/搜索