几句闲扯:首先,我想说java的线程池真的是很绕,之前一直都感受新建几个线程一直不退出究竟是怎么实现的,也就有了后来学习ThreadPoolExecutor源码。学习源码的过程当中,最恶心的其实就是几种状态的转换了,这也是ThreadPoolExecutor的核心。花了将近小一周才大体的弄明白ThreadPoolExecutor的机制,遂记录下来。java
线程是一个程序员必定会涉及到的一个概念,可是线程的建立和切换都是代价比较大的。因此,咱们有没有一个好的方案能作到线程的复用呢?这就涉及到一个概念——线程池。合理的使用线程池可以带来3个很明显的好处:程序员
java的线程池支持主要经过ThreadPoolExecutor来实现,咱们使用的ExecutorService的各类线程池策略都是基于ThreadPoolExecutor实现的,因此ThreadPoolExecutor十分重要。要弄明白各类线程池策略,必须先弄明白ThreadPoolExecutor。安全
首先看一个线程池的流程图:bash
线程池的建立能够经过ThreadPoolExecutor的构造方法实现:markdown
/** * Creates a new {@code ThreadPoolExecutor} with the given initial * parameters. * * @param corePoolSize the number of threads to keep in the pool, even * if they are idle, unless {@code allowCoreThreadTimeOut} is set * @param maximumPoolSize the maximum number of threads to allow in the * pool * @param keepAliveTime when the number of threads is greater than * the core, this is the maximum time that excess idle threads * will wait for new tasks before terminating. * @param unit the time unit for the {@code keepAliveTime} argument * @param workQueue the queue to use for holding tasks before they are * executed. This queue will hold only the {@code Runnable} * tasks submitted by the {@code execute} method. * @param threadFactory the factory to use when the executor * creates a new thread * @param handler the handler to use when execution is blocked * because the thread bounds and queue capacities are reached * @throws IllegalArgumentException if one of the following holds:<br> * {@code corePoolSize < 0}<br> * {@code keepAliveTime < 0}<br> * {@code maximumPoolSize <= 0}<br> * {@code maximumPoolSize < corePoolSize} * @throws NullPointerException if {@code workQueue} * or {@code threadFactory} or {@code handler} is null */ public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) { if (corePoolSize < 0 || maximumPoolSize <= 0 || maximumPoolSize < corePoolSize || keepAliveTime < 0) throw new IllegalArgumentException(); if (workQueue == null || threadFactory == null || handler == null) throw new NullPointerException(); this.corePoolSize = corePoolSize; this.maximumPoolSize = maximumPoolSize; this.workQueue = workQueue; this.keepAliveTime = unit.toNanos(keepAliveTime); this.threadFactory = threadFactory; this.handler = handler; } 复制代码
具体解释一下上述参数:多线程
ThreadPoolExecutor的构造方法如上所示,可是只是作一些参数的初始化,ThreadPoolExecutor被初始化好以后即可以提交线程任务,线程的提交方法主要是execute和submit。这里主要说execute,submit会在后续的博文中分析。less
/** * Executes the given task sometime in the future. The task * may execute in a new thread or in an existing pooled thread. * * If the task cannot be submitted for execution, either because this * executor has been shutdown or because its capacity has been reached, * the task is handled by the current {@code RejectedExecutionHandler}. * * @param command the task to execute * @throws RejectedExecutionException at discretion of * {@code RejectedExecutionHandler}, if the task * cannot be accepted for execution * @throws NullPointerException if {@code command} is null */ public void execute(Runnable command) { if (command == null) throw new NullPointerException(); /* * Proceed in 3 steps: * * 1. If fewer than corePoolSize threads are running, try to * start a new thread with the given command as its first * task. The call to addWorker atomically checks runState and * workerCount, and so prevents false alarms that would add * threads when it shouldn't, by returning false. * 若是当前的线程数小于核心线程池的大小,根据现有的线程做为第一个Worker运行的线程, * 新建一个Worker,addWorker自动的检查当前线程池的状态和Worker的数量, * 防止线程池在不能添加线程的状态下添加线程 * * 2. If a task can be successfully queued, then we still need * to double-check whether we should have added a thread * (because existing ones died since last checking) or that * the pool shut down since entry into this method. So we * recheck state and if necessary roll back the enqueuing if * stopped, or start a new thread if there are none. * 若是线程入队成功,而后仍是要进行double-check的,由于线程池在入队以后状态是可能会发生变化的 * * 3. If we cannot queue task, then we try to add a new * thread. If it fails, we know we are shut down or saturated * and so reject the task. * * 若是task不能入队(队列满了),这时候尝试增长一个新线程,若是增长失败那么当前的线程池状态变化了或者线程池已经满了 * 而后拒绝task */ int c = ctl.get(); //当前的Worker的数量小于核心线程池大小时,新建一个Worker。 if (workerCountOf(c) < corePoolSize) { if (addWorker(command, true)) return; c = ctl.get(); } if (isRunning(c) && workQueue.offer(command)) { int recheck = ctl.get(); if (! isRunning(recheck) && remove(command))//recheck防止线程池状态的突变,若是突变,那么将reject线程,防止workQueue中增长新线程 reject(command); else if (workerCountOf(recheck) == 0)//上下两个操做都有addWorker的操做,可是若是在workQueue.offer的时候Worker变为0, //那么将没有Worker执行新的task,因此增长一个Worker. addWorker(null, false); } //若是workQueue满了,那么这时候可能还没到线程池的maxnum,因此尝试增长一个Worker else if (!addWorker(command, false)) reject(command);//若是Worker数量到达上限,那么就拒绝此线程 } 复制代码
这里须要明确几个概念:ide
核心方法:addWorker Worker的增长和Task的获取以及终止都是在此方法中实现的,也就是这一个方法里面包含了不少东西。在addWorker方法中提到了Status的概念,Status是线程池的核心概念,这里咱们先看一段关于status的注释:oop
/** * 首先ctl是一个原子量,同时它里面包含了两个field,一个是workerCount,另外一个是runState * workerCount表示当前有效的线程数,也就是Worker的数量 * runState表示当前线程池的状态 * The main pool control state, ctl, is an atomic integer packing * two conceptual fields * workerCount, indicating the effective number of threads * runState, indicating whether running, shutting down etc * * 二者是怎么结合的呢?首先workerCount是占据着一个atomic integer的后29位的,而状态占据了前3位 * 因此,workerCount上限是(2^29)-1。 * In order to pack them into one int, we limit workerCount to * (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2 * billion) otherwise representable. If this is ever an issue in * the future, the variable can be changed to be an AtomicLong, * and the shift/mask constants below adjusted. But until the need * arises, this code is a bit faster and simpler using an int. * * The workerCount is the number of workers that have been * permitted to start and not permitted to stop. The value may be * transiently different from the actual number of live threads, * for example when a ThreadFactory fails to create a thread when * asked, and when exiting threads are still performing * bookkeeping before terminating. The user-visible pool size is * reported as the current size of the workers set. * * runState是整个线程池的运行生命周期,有以下取值: * 1. RUNNING:能够新加线程,同时能够处理queue中的线程。 * 2. SHUTDOWN:不增长新线程,可是处理queue中的线程。 * 3.STOP 不增长新线程,同时不处理queue中的线程。 * 4.TIDYING 全部的线程都终止了(queue中),同时workerCount为0,那么此时进入TIDYING * 5.terminated()方法结束,变为TERMINATED * The runState provides the main lifecyle control, taking on values: * * RUNNING: Accept new tasks and process queued tasks * SHUTDOWN: Don't accept new tasks, but process queued tasks * STOP: Don't accept new tasks, don't process queued tasks, * and interrupt in-progress tasks * TIDYING: All tasks have terminated, workerCount is zero, * the thread transitioning to state TIDYING * will run the terminated() hook method * TERMINATED: terminated() has completed * * The numerical order among these values matters, to allow * ordered comparisons. The runState monotonically increases over * time, but need not hit each state. The transitions are: * 状态的转化主要是: * RUNNING -> SHUTDOWN(调用shutdown()) * On invocation of shutdown(), perhaps implicitly in finalize() * (RUNNING or SHUTDOWN) -> STOP(调用shutdownNow()) * On invocation of shutdownNow() * SHUTDOWN -> TIDYING(queue和pool均empty) * When both queue and pool are empty * STOP -> TIDYING(pool empty,此时queue已经为empty) * When pool is empty * TIDYING -> TERMINATED(调用terminated()) * When the terminated() hook method has completed * * Threads waiting in awaitTermination() will return when the * state reaches TERMINATED. * * Detecting the transition from SHUTDOWN to TIDYING is less * straightforward than you'd like because the queue may become * empty after non-empty and vice versa during SHUTDOWN state, but * we can only terminate if, after seeing that it is empty, we see * that workerCount is 0 (which sometimes entails a recheck -- see * below). */ 复制代码
下面是状态的代码:学习
//利用ctl来保证当前线程池的状态和当前的线程的数量。ps:低29位为线程池容量,高3位为线程状态。 private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0)); //设定偏移量 private static final int COUNT_BITS = Integer.SIZE - 3; //肯定最大的容量2^29-1 private static final int CAPACITY = (1 << COUNT_BITS) - 1; //几个状态,用Integer的高三位表示 // runState is stored in the high-order bits //111 private static final int RUNNING = -1 << COUNT_BITS; //000 private static final int SHUTDOWN = 0 << COUNT_BITS; //001 private static final int STOP = 1 << COUNT_BITS; //010 private static final int TIDYING = 2 << COUNT_BITS; //011 private static final int TERMINATED = 3 << COUNT_BITS; //获取线程池状态,取前三位 // Packing and unpacking ctl private static int runStateOf(int c) { return c & ~CAPACITY; } //获取当前正在工做的worker,主要是取后面29位 private static int workerCountOf(int c) { return c & CAPACITY; } //获取ctl private static int ctlOf(int rs, int wc) { return rs | wc; } 复制代码
接下来贴上addWorker方法看看:
/** * Checks if a new worker can be added with respect to current * pool state and the given bound (either core or maximum). If so, * the worker count is adjusted accordingly, and, if possible, a * new worker is created and started running firstTask as its * first task. This method returns false if the pool is stopped or * eligible to shut down. It also returns false if the thread * factory fails to create a thread when asked, which requires a * backout of workerCount, and a recheck for termination, in case * the existence of this worker was holding up termination. * * @param firstTask the task the new thread should run first (or * null if none). Workers are created with an initial first task * (in method execute()) to bypass queuing when there are fewer * than corePoolSize threads (in which case we always start one), * or when the queue is full (in which case we must bypass queue). * Initially idle threads are usually created via * prestartCoreThread or to replace other dying workers. * * @param core if true use corePoolSize as bound, else * maximumPoolSize. (A boolean indicator is used here rather than a * value to ensure reads of fresh values after checking other pool * state). * @return true if successful */ private boolean addWorker(Runnable firstTask, boolean core) { retry: for (;;) { int c = ctl.get(); int rs = runStateOf(c); // Check if queue empty only if necessary. /** * rs!=Shutdown || fistTask!=null || workCount.isEmpty * 若是当前的线程池的状态>SHUTDOWN 那么拒绝Worker的add 若是=SHUTDOWN * 那么此时不能新加入不为null的Task,若是在WorkCount为empty的时候不能加入任何类型的Worker, * 若是不为empty能够加入task为null的Worker,增长消费的Worker */ if (rs >= SHUTDOWN && ! (rs == SHUTDOWN && firstTask == null && ! workQueue.isEmpty())) return false; for (;;) { int wc = workerCountOf(c); if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize)) return false; if (compareAndIncrementWorkerCount(c)) break retry; c = ctl.get(); // Re-read ctl if (runStateOf(c) != rs) continue retry; // else CAS failed due to workerCount change; retry inner loop } } Worker w = new Worker(firstTask); Thread t = w.thread; final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { // Recheck while holding lock. // Back out on ThreadFactory failure or if // shut down before lock acquired. int c = ctl.get(); int rs = runStateOf(c); /** * rs!=SHUTDOWN ||firstTask!=null * * 一样检测当rs>SHUTDOWN时直接拒绝减少Wc,同时Terminate,若是为SHUTDOWN同时firstTask不为null的时候也要Terminate */ if (t == null || (rs >= SHUTDOWN && ! (rs == SHUTDOWN && firstTask == null))) { decrementWorkerCount(); tryTerminate(); return false; } workers.add(w); int s = workers.size(); if (s > largestPoolSize) largestPoolSize = s; } finally { mainLock.unlock(); } t.start(); // It is possible (but unlikely) for a thread to have been // added to workers, but not yet started, during transition to // STOP, which could result in a rare missed interrupt, // because Thread.interrupt is not guaranteed to have any effect // on a non-yet-started Thread (see Thread#interrupt). //Stop或线程Interrupt的时候要停止全部的运行的Worker if (runStateOf(ctl.get()) == STOP && ! t.isInterrupted()) t.interrupt(); return true; } 复制代码
addWorker中首先进行了一次线程池状态的检测:
int c = ctl.get(); int rs = runStateOf(c); // Check if queue empty only if necessary. //判断当前线程池的状态是否是已经shutdown,若是shutdown了拒绝线程加入 //(rs!=SHUTDOWN || first!=null || workQueue.isEmpty()) //若是rs不为SHUTDOWN,此时状态是STOP、TIDYING或TERMINATED,因此此时要拒绝请求 //若是此时状态为SHUTDOWN,而传入一个不为null的线程,那么须要拒绝 //若是状态为SHUTDOWN,同时队列中已经没任务了,那么拒绝掉 if (rs >= SHUTDOWN && ! (rs == SHUTDOWN && firstTask == null && ! workQueue.isEmpty())) return false; 复制代码
实际上是比较难懂的,主要在线程池状态判断条件这里:
从这里是能够看出一些策略的
SHUTDOWN状态时,是不容许向workQueue中增长线程的,isRunning(c) && workQueue.offer(command) 每次在offer以前都要作状态检测,也就是线程池状态变为>=SHUTDOWN时不容许新线程进入线程池了。
for (;;) { int wc = workerCountOf(c); //若是当前的数量超过了CAPACITY,或者超过了corePoolSize和maximumPoolSize(试core而定) if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize)) return false; //CAS尝试增长线程数,若是失败,证实有竞争,那么从新到retry。 if (compareAndIncrementWorkerCount(c)) break retry; c = ctl.get(); // Re-read ctl //判断当前线程池的运行状态 if (runStateOf(c) != rs) continue retry; // else CAS failed due to workerCount change; retry inner loop } 复制代码
这段代码作了一个兼容,主要是没有到corePoolSize 或maximumPoolSize上限时,那么容许添加线程,CAS增长Worker的数量后,跳出循环。 接下来实例化Worker,实例化Worker实际上是很关键的,后面会说。 由于workers是HashSet线程不安全的,那么此时须要加锁,因此mainLock.lock(); 以后从新检查线程池的状态,若是状态不正确,那么减少Worker的数量,为何tryTerminate()目前不大清楚。若是状态正常,那么添加Worker到workers。最后:
if (runStateOf(ctl.get()) == STOP && ! t.isInterrupted()) t.interrupt(); 复制代码
注释说的很清楚,为了能及时的中断此Worker,由于线程存在未Start的状况,此时是不能响应中断的,若是此时status变为STOP,则不能中断线程。此处用做中断线程之用。 接下来咱们看Worker的方法:
/** * Creates with given first task and thread from ThreadFactory. * @param firstTask the first task (null if none) */ Worker(Runnable firstTask) { this.firstTask = firstTask; this.thread = getThreadFactory().newThread(this); } 复制代码
这里能够看出Worker是对firstTask的包装,而且Worker自己就是Runnable的,看上去真心很烦。 经过ThreadFactory为Worker本身构建一个线程。 由于Worker是Runnable类型的,因此是有run方法的,上面也看到了会调用t.start() 其实就是执行了run方法:
/** Delegates main run loop to outer runWorker */ public void run() { runWorker(this); } 复制代码
调用了runWorker:
/** * Main worker run loop. Repeatedly gets tasks from queue and * executes them, while coping with a number of issues: * 1 Worker可能仍是执行一个初始化的task——firstTask。 * 可是有时也不须要这个初始化的task(能够为null),只要pool在运行,就会 * 经过getTask从队列中获取Task,若是返回null,那么worker退出。 * 另外一种就是external抛出异常致使worker退出。 * 1. We may start out with an initial task, in which case we * don't need to get the first one. Otherwise, as long as pool is * running, we get tasks from getTask. If it returns null then the * worker exits due to changed pool state or configuration * parameters. Other exits result from exception throws in * external code, in which case completedAbruptly holds, which * usually leads processWorkerExit to replace this thread. * * * 2 在运行任何task以前,都须要对worker加锁来防止other pool中断worker。 * clearInterruptsForTaskRun保证除了线程池stop,那么现场都没有中断标志 * 2. Before running any task, the lock is acquired to prevent * other pool interrupts while the task is executing, and * clearInterruptsForTaskRun called to ensure that unless pool is * stopping, this thread does not have its interrupt set. * * 3. Each task run is preceded by a call to beforeExecute, which * might throw an exception, in which case we cause thread to die * (breaking loop with completedAbruptly true) without processing * the task. * * 4. Assuming beforeExecute completes normally, we run the task, * gathering any of its thrown exceptions to send to * afterExecute. We separately handle RuntimeException, Error * (both of which the specs guarantee that we trap) and arbitrary * Throwables. Because we cannot rethrow Throwables within * Runnable.run, we wrap them within Errors on the way out (to the * thread's UncaughtExceptionHandler). Any thrown exception also * conservatively causes thread to die. * * 5. After task.run completes, we call afterExecute, which may * also throw an exception, which will also cause thread to * die. According to JLS Sec 14.20, this exception is the one that * will be in effect even if task.run throws. * * The net effect of the exception mechanics is that afterExecute * and the thread's UncaughtExceptionHandler have as accurate * information as we can provide about any problems encountered by * user code. * * @param w the worker */ final void runWorker(Worker w) { Runnable task = w.firstTask; w.firstTask = null; //标识线程是否是异常终止的 boolean completedAbruptly = true; try { //task不为null状况是初始化worker时,若是task为null,则去队列中取线程--->getTask() while (task != null || (task = getTask()) != null) { w.lock(); //获取woker的锁,防止线程被其余线程中断 clearInterruptsForTaskRun();//清楚全部中断标记 try { beforeExecute(w.thread, task);//线程开始执行以前执行此方法,能够实现Worker未执行退出,本类中未实现 Throwable thrown = null; try { task.run(); } catch (RuntimeException x) { thrown = x; throw x; } catch (Error x) { thrown = x; throw x; } catch (Throwable x) { thrown = x; throw new Error(x); } finally { afterExecute(task, thrown);//线程执行后执行,能够实现标识Worker异常中断的功能,本类中未实现 } } finally { task = null;//运行过的task标null w.completedTasks++; w.unlock(); } } completedAbruptly = false; } finally { //处理worker退出的逻辑 processWorkerExit(w, completedAbruptly); } } 复制代码
从上面代码能够看出,execute的Task是被“包装 ”了一层,线程启动时是内部调用了Task的run方法。 接下来全部的核心集中在getTask()方法上:
/** * Performs blocking or timed wait for a task, depending on * current configuration settings, or returns null if this worker * must exit because of any of: * 1. There are more than maximumPoolSize workers (due to * a call to setMaximumPoolSize). * 2. The pool is stopped. * 3. The pool is shutdown and the queue is empty. * 4. This worker timed out waiting for a task, and timed-out * workers are subject to termination (that is, * {@code allowCoreThreadTimeOut || workerCount > corePoolSize}) * both before and after the timed wait. * * @return task, or null if the worker must exit, in which case * workerCount is decremented * * * 队列中获取线程 */ private Runnable getTask() { boolean timedOut = false; // Did the last poll() time out? retry: for (;;) { int c = ctl.get(); int rs = runStateOf(c); // Check if queue empty only if necessary. //当前状态为>stop时,不处理workQueue中的任务,同时减少worker的数量因此返回null,若是为shutdown 同时workQueue已经empty了,一样减少worker数量并返回null if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) { decrementWorkerCount(); return null; } boolean timed; // Are workers subject to culling? for (;;) { int wc = workerCountOf(c); timed = allowCoreThreadTimeOut || wc > corePoolSize; if (wc <= maximumPoolSize && ! (timedOut && timed)) break; if (compareAndDecrementWorkerCount(c)) return null; c = ctl.get(); // Re-read ctl if (runStateOf(c) != rs) continue retry; // else CAS failed due to workerCount change; retry inner loop } try { Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take(); if (r != null) return r; timedOut = true; } catch (InterruptedException retry) { timedOut = false; } } } 复制代码
这段代码十分关键,首先看几个局部变量: boolean timedOut = false; 主要是判断后面的poll是否要超时 boolean timed; 主要是标识着当前Worker超时是否要退出。wc > corePoolSize时须要减少空闲的Worker数,那么timed为true,可是wc <= corePoolSize时,不能减少核心线程数timed为false。 timedOut初始为false,若是timed为true那么使用poll取线程。若是正常返回,那么返回取到的task。若是超时,证实worker空闲,同时worker超过了corePoolSize,须要删除。返回r=null。则 timedOut = true。此时循环到wc <= maximumPoolSize && ! (timedOut && timed)时,减少worker数,并返回null,致使worker退出。若是线程数<= corePoolSize,那么此时调用 workQueue.take(),没有线程获取到时将一直阻塞,知道获取到线程或者中断,关于中断后面Shutdown的时候会说。
至此线程执行过程就分析完了
我我的认为,若是想了解明白线程池,那么就必定要理解好各个状态之间的转换,想理解转换,线程池的终止机制是很好的一个途径。对于关闭线程池主要有两个方法shutdown()和shutdownNow(): 首先从shutdown()方法开始:
/** * Initiates an orderly shutdown in which previously submitted * tasks are executed, but no new tasks will be accepted. * Invocation has no additional effect if already shut down. * * <p>This method does not wait for previously submitted tasks to * complete execution. Use {@link #awaitTermination awaitTermination} * to do that. * * @throws SecurityException {@inheritDoc} */ public void shutdown() { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { //判断是否能够操做目标线程 checkShutdownAccess(); //设置线程池状态为SHUTDOWN,此处以后,线程池中不会增长新Task advanceRunState(SHUTDOWN); //中断全部的空闲线程 interruptIdleWorkers(); onShutdown(); // hook for ScheduledThreadPoolExecutor } finally { mainLock.unlock(); } //转到Terminate tryTerminate(); } 复制代码
shutdown作了几件事: 1. 检查是否能操做目标线程 2. 将线程池状态转为SHUTDOWN 3. 中断全部空闲线程
这里就引起了一个问题,什么是空闲线程? 这须要接着看看interruptIdleWorkers是怎么回事。
private void interruptIdleWorkers(boolean onlyOne) { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); //这里的意图很简单,遍历workers 对全部worker作中断处理。 // w.tryLock()对Worker加锁,这保证了正在运行执行Task的Worker不会被中断,那么能中断哪些线程呢? try { for (Worker w : workers) { Thread t = w.thread; if (!t.isInterrupted() && w.tryLock()) { try { t.interrupt(); } catch (SecurityException ignore) { } finally { w.unlock(); } } if (onlyOne) break; } } finally { mainLock.unlock(); } } 复制代码
这里主要是为了中断worker,可是中断以前须要先获取锁,这就意味着正在运行的Worker不能中断。可是上面的代码有w.tryLock(),那么获取不到锁就不会中断,shutdown的Interrupt只是对全部的空闲Worker(正在从workQueue中取Task,此时Worker没有加锁)发送中断信号。
while (task != null || (task = getTask()) != null) { w.lock(); //获取woker的锁,防止线程被其余线程中断 clearInterruptsForTaskRun();//清楚全部中断标记 try { beforeExecute(w.thread, task);//线程开始执行以前执行此方法,能够实现Worker未执行退出,本类中未实现 Throwable thrown = null; try { task.run(); } catch (RuntimeException x) { thrown = x; throw x; } catch (Error x) { thrown = x; throw x; } catch (Throwable x) { thrown = x; throw new Error(x); } finally { afterExecute(task, thrown);//线程执行后执行,能够实现标识Worker异常中断的功能,本类中未实现 } } finally { task = null;//运行过的task标null w.completedTasks++; w.unlock(); } } 复制代码
在runWorker中,每个Worker getTask成功以后都要获取Worker的锁以后运行,也就是说运行中的Worker不会中断。由于核心线程通常在空闲的时候会一直阻塞在获取Task上,也只有中断才可能致使其退出。这些阻塞着的Worker就是空闲的线程(固然,非核心线程,而且阻塞的也是空闲线程)。在getTask方法中:
private Runnable getTask() { boolean timedOut = false; // Did the last poll() time out? retry: for (;;) { int c = ctl.get(); int rs = runStateOf(c); // Check if queue empty only if necessary. //当前状态为>stop时,不处理workQueue中的任务,同时减少worker的数量因此返回null,若是为shutdown 同时workQueue已经empty了,一样减少worker数量并返回null if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) { decrementWorkerCount(); return null; } boolean timed; // Are workers subject to culling? for (;;) { //allowCoreThreadTimeOu是判断CoreThread是否会超时的,true为会超时,false不会超时。默认为false int wc = workerCountOf(c); timed = allowCoreThreadTimeOut || wc > corePoolSize; if (wc <= maximumPoolSize && ! (timedOut && timed)) break; if (compareAndDecrementWorkerCount(c)) return null; c = ctl.get(); // Re-read ctl if (runStateOf(c) != rs) continue retry; // else CAS failed due to workerCount change; retry inner loop } try { Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take(); if (r != null) return r; timedOut = true; } catch (InterruptedException retry) { timedOut = false; } } } 复制代码
会有两阶段的Worker:
当调用ShutDown方法时,首先设置了线程池的状态为ShutDown,此时1阶段的worker进入到状态判断时会返回null,此时Worker退出。 由于getTask的时候是不加锁的,因此在shutdown时能够调用worker.Interrupt.此时会中断退出,Loop到状态判断时,同时workQueue为empty。那么抛出中断异常,致使从新Loop,在检测线程池状态时,Worker退出。若是workQueue不为null就不会退出,此处有些疑问,由于没有看见中断标志位清除的逻辑,那么这里就会不停的循环直到workQueue为Empty退出。 这里也能看出来SHUTDOWN只是清除一些空闲Worker,而且拒绝新Task加入,对于workQueue中的线程仍是继续处理的。 对于shutdown中获取mainLock而addWorker中也作了mainLock的获取,这么作主要是由于Works是HashSet类型的,是线程不安全的,咱们也看到在addWorker后面也是对线程池状态作了判断,将Worker添加和中断逻辑分离开。 接下来作了tryTerminate()操做,这操做是进行了后面状态的转换,在shutdownNow后面说。 接下来看看shutdownNow:
/** * Attempts to stop all actively executing tasks, halts the * processing of waiting tasks, and returns a list of the tasks * that were awaiting execution. These tasks are drained (removed) * from the task queue upon return from this method. * * <p>This method does not wait for actively executing tasks to * terminate. Use {@link #awaitTermination awaitTermination} to * do that. * * <p>There are no guarantees beyond best-effort attempts to stop * processing actively executing tasks. This implementation * cancels tasks via {@link Thread#interrupt}, so any task that * fails to respond to interrupts may never terminate. * * @throws SecurityException {@inheritDoc} */ public List<Runnable> shutdownNow() { List<Runnable> tasks; final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { checkShutdownAccess(); advanceRunState(STOP); interruptWorkers(); tasks = drainQueue(); } finally { mainLock.unlock(); } tryTerminate(); return tasks; } 复制代码
shutdownNow和shutdown代码相似,可是实现却很不相同。首先是设置线程池状态为STOP,前面的代码咱们能够看到,是对SHUTDOWN有一些额外的判断逻辑,可是对于>=STOP,基本都是reject,STOP也是比SHUTDOWN更加严格的一种状态。此时不会有新Worker加入,全部刚执行完一个线程后去GetTask的Worker都会退出。 以后调用interruptWorkers:
/** * Interrupts all threads, even if active. Ignores SecurityExceptions * (in which case some threads may remain uninterrupted). */ private void interruptWorkers() { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { for (Worker w : workers) { try { w.thread.interrupt(); } catch (SecurityException ignore) { } } } finally { mainLock.unlock(); } } 复制代码
这里能够看出来,此方法目的是中断全部的Worker,而不是像shutdown中那样只中断空闲线程。这样体现了STOP的特色,中断全部线程,同时workQueue中的Task也不会执行了。因此接下来drainQueue:
/** * Drains the task queue into a new list, normally using * drainTo. But if the queue is a DelayQueue or any other kind of * queue for which poll or drainTo may fail to remove some * elements, it deletes them one by one. */ private List<Runnable> drainQueue() { BlockingQueue<Runnable> q = workQueue; List<Runnable> taskList = new ArrayList<Runnable>(); q.drainTo(taskList); if (!q.isEmpty()) { for (Runnable r : q.toArray(new Runnable[0])) { if (q.remove(r)) taskList.add(r); } } return taskList; } 复制代码
获取全部没有执行的Task,而且返回。 这也体现了STOP的特色: 拒绝全部新Task的加入,同时中断全部线程,WorkerQueue中没有执行的线程所有抛弃。因此此时Pool是空的,WorkerQueue也是空的。 这以后就是进行到TIDYING和TERMINATED的转化了:
/** * Transitions to TERMINATED state if either (SHUTDOWN and pool * and queue empty) or (STOP and pool empty). If otherwise * eligible to terminate but workerCount is nonzero, interrupts an * idle worker to ensure that shutdown signals propagate. This * method must be called following any action that might make * termination possible -- reducing worker count or removing tasks * from the queue during shutdown. The method is non-private to * allow access from ScheduledThreadPoolExecutor. */ final void tryTerminate() { for (;;) { int c = ctl.get(); if (isRunning(c) || runStateAtLeast(c, TIDYING) || (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty())) return; if (workerCountOf(c) != 0) { // Eligible to terminate interruptIdleWorkers(ONLY_ONE); return; } final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) { try { terminated(); } finally { ctl.set(ctlOf(TERMINATED, 0)); termination.signalAll(); } return; } } finally { mainLock.unlock(); } // else retry on failed CAS } } 复制代码
上面的代码其实颇有意思有几种状态是不能转化到TIDYING的:
也说明了两点: 1. SHUTDOWN想转化为TIDYING,须要workQueue为空,同时workerCount为0。 2. STOP转化为TIDYING,须要workerCount为0
若是知足上面的条件(通常必定时间后都会知足的),那么CAS成TIDYING,TIDYING也只是个过分状态,最终会转化为TERMINATED。
至此,ThreadPoolExecutor一些核心思想就介绍完了,想分析清楚实在是不容易,对于ThreadPoolExecutor我仍是有些不懂地方,以上只是我对源码的片面的看法,若是有不正确之处,但愿各位大佬指出
欢迎你们关注个人公众号【风平浪静如码】,海量Java相关文章,学习资料都会在里面更新,整理的资料也会放在里面。
以为写的还不错的就点个赞,加个关注呗!点关注,不迷路,持续更新!!!